Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Addressing proteolytic efficiency in enzymatic degradation therapy for celiac disease

M. Rey, M. Yang, L. Lee, Y. Zhang, JG. Sheff, CW. Sensen, H. Mrazek, P. Halada, P. Man, JL. McCarville, EF. Verdu, DC. Schriemer,

. 2016 ; 6 (-) : 30980. [pub] 20160802

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18025335

Celiac disease is triggered by partially digested gluten proteins. Enzyme therapies that complete protein digestion in vivo could support a gluten-free diet, but the barrier to completeness is high. Current options require enzyme amounts on the same order as the protein meal itself. In this study, we evaluated proteolytic components of the carnivorous pitcher plant (Nepenthes spp.) for use in this context. Remarkably low doses enhance gliadin solubilization rates, and degrade gliadin slurries within the pH and temporal constraints of human gastric digestion. Potencies in excess of 1200:1 (substrate-to-enzyme) are achieved. Digestion generates small peptides through nepenthesin and neprosin, the latter a novel enzyme defining a previously-unknown class of prolyl endoprotease. The digests also exhibit reduced TG2 conversion rates in the immunogenic regions of gliadin, providing a twin mechanism for evading T-cell recognition. When sensitized and dosed with enzyme-treated gliadin, NOD/DQ8 mice did not show intestinal inflammation, when compared to mice challenged with only pepsin-treated gliadin. The low enzyme load needed for effective digestion suggests that gluten detoxification can be achieved in a meal setting, using metered dosing based on meal size. We demonstrate this by showing efficient antigen processing at total substrate-to-enzyme ratios exceeding 12,000:1.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18025335
003      
CZ-PrNML
005      
20180710093643.0
007      
ta
008      
180709s2016 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/srep30980 $2 doi
035    __
$a (PubMed)27481162
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Rey, Martial $u Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada. Structural Mass Spectrometry and Proteomics Unit, Institut Pasteur, CNRS UMR 3528, Paris, France.
245    10
$a Addressing proteolytic efficiency in enzymatic degradation therapy for celiac disease / $c M. Rey, M. Yang, L. Lee, Y. Zhang, JG. Sheff, CW. Sensen, H. Mrazek, P. Halada, P. Man, JL. McCarville, EF. Verdu, DC. Schriemer,
520    9_
$a Celiac disease is triggered by partially digested gluten proteins. Enzyme therapies that complete protein digestion in vivo could support a gluten-free diet, but the barrier to completeness is high. Current options require enzyme amounts on the same order as the protein meal itself. In this study, we evaluated proteolytic components of the carnivorous pitcher plant (Nepenthes spp.) for use in this context. Remarkably low doses enhance gliadin solubilization rates, and degrade gliadin slurries within the pH and temporal constraints of human gastric digestion. Potencies in excess of 1200:1 (substrate-to-enzyme) are achieved. Digestion generates small peptides through nepenthesin and neprosin, the latter a novel enzyme defining a previously-unknown class of prolyl endoprotease. The digests also exhibit reduced TG2 conversion rates in the immunogenic regions of gliadin, providing a twin mechanism for evading T-cell recognition. When sensitized and dosed with enzyme-treated gliadin, NOD/DQ8 mice did not show intestinal inflammation, when compared to mice challenged with only pepsin-treated gliadin. The low enzyme load needed for effective digestion suggests that gluten detoxification can be achieved in a meal setting, using metered dosing based on meal size. We demonstrate this by showing efficient antigen processing at total substrate-to-enzyme ratios exceeding 12,000:1.
650    _2
$a zvířata $7 D000818
650    _2
$a celiakie $x enzymologie $x imunologie $x terapie $7 D002446
650    12
$a bezlepková dieta $7 D055050
650    _2
$a Drosophila $x metabolismus $7 D004330
650    12
$a enzymoterapie $7 D057487
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a proteiny vázající GTP $x metabolismus $7 D019204
650    _2
$a gliadin $x metabolismus $7 D005903
650    _2
$a gluteny $x metabolismus $7 D005983
650    _2
$a lidé $7 D006801
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    _2
$a zánět $x imunologie $x metabolismus $x prevence a kontrola $7 D007249
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši $7 D051379
650    _2
$a myši inbrední NOD $7 D016688
650    _2
$a proteolýza $7 D059748
650    _2
$a transglutaminasy $x metabolismus $7 D011503
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Yang, Menglin $u Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada.
700    1_
$a Lee, Linda $u Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada.
700    1_
$a Zhang, Ye $u Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada.
700    1_
$a Sheff, Joey G $u Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada.
700    1_
$a Sensen, Christoph W $u Graz University of Technology, Institute of Molecular Biotechnology, Graz, Austria.
700    1_
$a Mrazek, Hynek $u Institute of Microbiology, Academy of Sciences of the Czech Republic, and Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Halada, Petr $u Institute of Microbiology, Academy of Sciences of the Czech Republic, and Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
700    1_
$a Man, Petr $u Institute of Microbiology, Academy of Sciences of the Czech Republic, and Department of Biochemistry, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
700    1_
$a McCarville, Justin L $u Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.
700    1_
$a Verdu, Elena F $u Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada.
700    1_
$a Schriemer, David C $u Department of Biochemistry and Molecular Biology and the Southern Alberta Cancer Research Institute, University of Calgary, Calgary, Alberta, Canada.
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 6, č. - (2016), s. 30980
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27481162 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20180709 $b ABA008
991    __
$a 20180710093933 $b ABA008
999    __
$a ok $b bmc $g 1317466 $s 1022256
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 6 $c - $d 30980 $e 20160802 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
LZP    __
$a Pubmed-20180709

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...