• Je něco špatně v tomto záznamu ?

Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains

P. Cejnar, S. Kuckova, A. Prochazka, L. Karamonova, B. Svobodova,

. 2018 ; 32 (11) : 871-881.

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033258

RATIONALE: Explorative statistical analysis of mass spectrometry data is still a time-consuming step. We analyzed critical factors for application of principal component analysis (PCA) in mass spectrometry and focused on two whole spectrum based normalization techniques and their application in the analysis of registered peak data and, in comparison, in full spectrum data analysis. We used this technique to identify different metabolic patterns in the bacterial culture of Cronobacter sakazakii, an important foodborne pathogen. METHODS: Two software utilities, the ms-alone, a python-based utility for mass spectrometry data preprocessing and peak extraction, and the multiMS-toolbox, an R software tool for advanced peak registration and detailed explorative statistical analysis, were implemented. The bacterial culture of Cronobacter sakazakii was cultivated on Enterobacter sakazakii Isolation Agar, Blood Agar Base and Tryptone Soya Agar for 24 h and 48 h and applied by the smear method on an Autoflex speed MALDI-TOF mass spectrometer. RESULTS: For three tested cultivation media only two different metabolic patterns of Cronobacter sakazakii were identified using PCA applied on data normalized by two different normalization techniques. Results from matched peak data and subsequent detailed full spectrum analysis identified only two different metabolic patterns - a cultivation on Enterobacter sakazakii Isolation Agar showed significant differences to the cultivation on the other two tested media. The metabolic patterns for all tested cultivation media also proved the dependence on cultivation time. CONCLUSIONS: Both whole spectrum based normalization techniques together with the full spectrum PCA allow identification of important discriminative factors in experiments with several variable condition factors avoiding any problems with improper identification of peaks or emphasis on bellow threshold peak data. The amounts of processed data remain still manageable. Both implemented software utilities are available free of charge from http://uprt.vscht.cz/ms.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033258
003      
CZ-PrNML
005      
20181012121434.0
007      
ta
008      
181008s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1002/rcm.8110 $2 doi
035    __
$a (PubMed)29520858
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Cejnar, Pavel $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, Technická 5, 166 28, Praha 6, Czech Republic. Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Praha 6, Czech Republic.
245    10
$a Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains / $c P. Cejnar, S. Kuckova, A. Prochazka, L. Karamonova, B. Svobodova,
520    9_
$a RATIONALE: Explorative statistical analysis of mass spectrometry data is still a time-consuming step. We analyzed critical factors for application of principal component analysis (PCA) in mass spectrometry and focused on two whole spectrum based normalization techniques and their application in the analysis of registered peak data and, in comparison, in full spectrum data analysis. We used this technique to identify different metabolic patterns in the bacterial culture of Cronobacter sakazakii, an important foodborne pathogen. METHODS: Two software utilities, the ms-alone, a python-based utility for mass spectrometry data preprocessing and peak extraction, and the multiMS-toolbox, an R software tool for advanced peak registration and detailed explorative statistical analysis, were implemented. The bacterial culture of Cronobacter sakazakii was cultivated on Enterobacter sakazakii Isolation Agar, Blood Agar Base and Tryptone Soya Agar for 24 h and 48 h and applied by the smear method on an Autoflex speed MALDI-TOF mass spectrometer. RESULTS: For three tested cultivation media only two different metabolic patterns of Cronobacter sakazakii were identified using PCA applied on data normalized by two different normalization techniques. Results from matched peak data and subsequent detailed full spectrum analysis identified only two different metabolic patterns - a cultivation on Enterobacter sakazakii Isolation Agar showed significant differences to the cultivation on the other two tested media. The metabolic patterns for all tested cultivation media also proved the dependence on cultivation time. CONCLUSIONS: Both whole spectrum based normalization techniques together with the full spectrum PCA allow identification of important discriminative factors in experiments with several variable condition factors avoiding any problems with improper identification of peaks or emphasis on bellow threshold peak data. The amounts of processed data remain still manageable. Both implemented software utilities are available free of charge from http://uprt.vscht.cz/ms.
650    _2
$a bakteriologické techniky $7 D001431
650    _2
$a Cronobacter sakazakii $x růst a vývoj $x metabolismus $7 D044083
650    _2
$a kultivační média $7 D003470
650    12
$a analýza hlavních komponent $7 D025341
650    12
$a software $7 D012984
650    _2
$a spektrometrie hmotnostní - ionizace laserem za účasti matrice $x metody $x normy $x statistika a číselné údaje $7 D019032
650    _2
$a časové faktory $7 D013997
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kuckova, Stepanka $u Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Praha 6, Czech Republic.
700    1_
$a Prochazka, Ales $u Department of Computing and Control Engineering, University of Chemistry and Technology in Prague, Technická 5, 166 28, Praha 6, Czech Republic.
700    1_
$a Karamonova, Ludmila $u Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Praha 6, Czech Republic.
700    1_
$a Svobodova, Barbora $u Department of Biochemistry and Microbiology, University of Chemistry and Technology in Prague, Technická 5, 166 28, Praha 6, Czech Republic.
773    0_
$w MED00004050 $t Rapid communications in mass spectrometry RCM $x 1097-0231 $g Roč. 32, č. 11 (2018), s. 871-881
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29520858 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181012121926 $b ABA008
999    __
$a ok $b bmc $g 1340073 $s 1030252
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 32 $c 11 $d 871-881 $i 1097-0231 $m Rapid communications in mass spectrometry $n Rapid Commun Mass Spectrom $x MED00004050
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...