Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Validating Baboon Ex Vivo and In Vivo Radiation-Related Gene Expression with Corresponding Human Data

M. Port, M. Majewski, F. Herodin, M. Valente, M. Drouet, F. Forcheron, A. Tichy, I. Sirak, A. Zavrelova, A. Malkova, BV. Becker, DA. Veit, S. Waldeck, C. Badie, G. O'Brien, H. Christiansen, J. Wichmann, M. Eder, G. Beutel, J. Vachelova, S....

. 2018 ; 189 (4) : 389-398. [pub] 20180126

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc18033363

The research for high-throughput diagnostic tests for victims of radio/nuclear incidents remains ongoing. In this context, we have previously identified candidate genes that predict risk of late-occurring hematologic acute radiation syndrome (HARS) in a baboon model. The goal of the current study was to validate these genes after radiation exposure in humans. We also examined ex vivo relative to in vivo measurements in both species and describe dose-response relationships. Eighteen baboons were irradiated in vivo to simulate different patterns of partial- or total-body irradiation (TBI), corresponding to an equivalent dose of 2.5 or 5 Sv. Human in vivo blood samples were obtained from patients exposed to different dose ranges: diagnostic computerized tomography (CT; 0.004-0.018 Sv); radiotherapy for prostate cancer (0.25-0.3 Sv); and TBI of leukemia patients (2 × 1.5 or 2 × 2 Sv, five patients each). Peripheral whole blood of another five baboons and human samples from five healthy donors were cultivated ex vivo and irradiated with 0-4 Sv. RNA was isolated pairwise before and 24 h after irradiation and converted into cDNA. Gene expression of six promising candidate genes found previously by us in a baboon model ( WNT3, POU2AF1, CCR7, ARG2, CD177, WLS), as well as three genes commonly used in ex vivo whole blood experiments ( FDXR, PCNA, DDB2) was measured using qRT-PCR. We confirmed the six baboon candidate genes in leukemia patients. However, expression for the candidate gene FDXR showed an inverse relationship, as it was downregulated in baboons and upregulated in human samples. Comparisons among the in vivo and ex vivo experiments revealed the same pattern in both species and indicated peripheral blood cells to represent the radiation-responsive targets causing WNT3 and POU2AF1 gene expression changes. CCR7, ARG2, CD177 and WLS appeared to be altered due to radiation-responsive targets other than the whole blood cells. Linear dose-response relationships of FDXR, WNT3 and POU2AF1 using human ex vivo samples corresponded with human in vivo samples, suggesting that ex vivo models for in vivo dose estimates can be used over a wide dose range (0.001-5 Sv for POU2AF1). In summary, we validated six baboon candidate genes in humans, but the FDXR measurements underscored the importance of independent assessments even when candidates from animal models have striking gene sequence homology to humans. Since whole blood cells represented the same radiation-responsive targets for FDXR, WNT3 and POU2AF1 gene expression changes, ex vivo cell culture models can be utilized for in vivo dose estimates over a dose range covering up to 3.5 log scales. These findings might be a step forward in the development of a gene expression-based high-throughput diagnostic test for populations involved in large-scale radio/nuclear incidents.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033363
003      
CZ-PrNML
005      
20181012121944.0
007      
ta
008      
181008s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1667/RR14958.1 $2 doi
035    __
$a (PubMed)29373091
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Port, M $u a  Bundeswehr Institute of Radiobiology, Munich, Germany.
245    10
$a Validating Baboon Ex Vivo and In Vivo Radiation-Related Gene Expression with Corresponding Human Data / $c M. Port, M. Majewski, F. Herodin, M. Valente, M. Drouet, F. Forcheron, A. Tichy, I. Sirak, A. Zavrelova, A. Malkova, BV. Becker, DA. Veit, S. Waldeck, C. Badie, G. O'Brien, H. Christiansen, J. Wichmann, M. Eder, G. Beutel, J. Vachelova, S. Doucha-Senf, M. Abend,
520    9_
$a The research for high-throughput diagnostic tests for victims of radio/nuclear incidents remains ongoing. In this context, we have previously identified candidate genes that predict risk of late-occurring hematologic acute radiation syndrome (HARS) in a baboon model. The goal of the current study was to validate these genes after radiation exposure in humans. We also examined ex vivo relative to in vivo measurements in both species and describe dose-response relationships. Eighteen baboons were irradiated in vivo to simulate different patterns of partial- or total-body irradiation (TBI), corresponding to an equivalent dose of 2.5 or 5 Sv. Human in vivo blood samples were obtained from patients exposed to different dose ranges: diagnostic computerized tomography (CT; 0.004-0.018 Sv); radiotherapy for prostate cancer (0.25-0.3 Sv); and TBI of leukemia patients (2 × 1.5 or 2 × 2 Sv, five patients each). Peripheral whole blood of another five baboons and human samples from five healthy donors were cultivated ex vivo and irradiated with 0-4 Sv. RNA was isolated pairwise before and 24 h after irradiation and converted into cDNA. Gene expression of six promising candidate genes found previously by us in a baboon model ( WNT3, POU2AF1, CCR7, ARG2, CD177, WLS), as well as three genes commonly used in ex vivo whole blood experiments ( FDXR, PCNA, DDB2) was measured using qRT-PCR. We confirmed the six baboon candidate genes in leukemia patients. However, expression for the candidate gene FDXR showed an inverse relationship, as it was downregulated in baboons and upregulated in human samples. Comparisons among the in vivo and ex vivo experiments revealed the same pattern in both species and indicated peripheral blood cells to represent the radiation-responsive targets causing WNT3 and POU2AF1 gene expression changes. CCR7, ARG2, CD177 and WLS appeared to be altered due to radiation-responsive targets other than the whole blood cells. Linear dose-response relationships of FDXR, WNT3 and POU2AF1 using human ex vivo samples corresponded with human in vivo samples, suggesting that ex vivo models for in vivo dose estimates can be used over a wide dose range (0.001-5 Sv for POU2AF1). In summary, we validated six baboon candidate genes in humans, but the FDXR measurements underscored the importance of independent assessments even when candidates from animal models have striking gene sequence homology to humans. Since whole blood cells represented the same radiation-responsive targets for FDXR, WNT3 and POU2AF1 gene expression changes, ex vivo cell culture models can be utilized for in vivo dose estimates over a dose range covering up to 3.5 log scales. These findings might be a step forward in the development of a gene expression-based high-throughput diagnostic test for populations involved in large-scale radio/nuclear incidents.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a zvířata $7 D000818
650    _2
$a vztah dávky záření a odpovědi $7 D004307
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    12
$a Papio $7 D010215
650    _2
$a druhová specificita $7 D013045
650    _2
$a transkriptom $x účinky záření $7 D059467
650    _2
$a celotělové ozáření $7 D014916
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Majewski, M $u a  Bundeswehr Institute of Radiobiology, Munich, Germany.
700    1_
$a Herodin, F $u b  Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France.
700    1_
$a Valente, M $u b  Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France.
700    1_
$a Drouet, M $u b  Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France.
700    1_
$a Forcheron, F $u b  Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France.
700    1_
$a Tichy, A $u c  Departments of Radiobiology, Faculty of Military Health Sciences, University of Defence, Brno and Biomedical Research Centre.
700    1_
$a Sirak, I $u d  Oncology and Radiotherapy, and 4th Department of Internal Medicine - Hematology, University Hospital Hradec Králové, Hradec Králové, Czech Republic.
700    1_
$a Zavrelova, A $u d  Oncology and Radiotherapy, and 4th Department of Internal Medicine - Hematology, University Hospital Hradec Králové, Hradec Králové, Czech Republic.
700    1_
$a Malkova, A $u e  Department of Hygiene and Preventive Medicine, Faculty of Medicine, Charles University, Hradec Králové, Czech Republic.
700    1_
$a Becker, B V $u a  Bundeswehr Institute of Radiobiology, Munich, Germany.
700    1_
$a Veit, D A $u f  Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany.
700    1_
$a Waldeck, S $u f  Bundeswehr Central Hospital, Department of Radiology and Neuroradiology, Koblenz, Germany.
700    1_
$a Badie, C $u g  Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, United Kingdom.
700    1_
$a O'Brien, G $u g  Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, United Kingdom.
700    1_
$a Christiansen, H $u h  Departments of Radiation Oncology.
700    1_
$a Wichmann, J $u h  Departments of Radiation Oncology.
700    1_
$a Eder, M $u i  Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
700    1_
$a Beutel, G $u i  Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany.
700    1_
$a Vachelova, J $u j  Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Řež, Czech Republic.
700    1_
$a Doucha-Senf, S $u a  Bundeswehr Institute of Radiobiology, Munich, Germany.
700    1_
$a Abend, M $u a  Bundeswehr Institute of Radiobiology, Munich, Germany.
773    0_
$w MED00010511 $t Radiation research $x 1938-5404 $g Roč. 189, č. 4 (2018), s. 389-398
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29373091 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181012122436 $b ABA008
999    __
$a ok $b bmc $g 1340889 $s 1030357
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 189 $c 4 $d 389-398 $e 20180126 $i 1938-5404 $m Radiation research $n Radiat Res $x MED00010511
LZP    __
$a Pubmed-20181008

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...