Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Prediction of semen quality using artificial neural network

Anna Badura, Urszula Marzec-Wróblewska, Piotr Kamiński, Paweł Łakota, Grzegorz Ludwikowski, Marek Szymański, Karolina Wasilow, Andżelika Lorenc, Adam Buciński

. 2019 ; 17 (3) : 167-174.

Language English Country Czech Republic

Examination of semen characteristics is routinely performed for fertility status investigation of the male partner of an infertile couple as well as for evaluation of the sperm donor candidate. A useful tool for preliminary assessment of semen characteristics might be an artificial neural network. Thus, the aim of the present study was to construct an artificial neural network, which could be used for predicting the result of semen analysis based on the basic questionnaire data. On the basis of eleven survey questions two models of artificial neural networks to predict semen parameters were developed. The first model aims to predict the overall performance and profile of semen. The second network was developed to predict the concentration of sperm. The network to evaluate sperm concentration proved to be the most efficient. 92.93% of the patients in the learning process were properly qualified for the group with a correct or incorrect result, while the result for the test set was 85.71%. This study suggests that an artificial neural network based on eleven survey questions might be a valuable tool for preliminary evaluation and prediction of the semen profile.

References provided by Crossref.org

Bibliography, etc.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc19039371
003      
CZ-PrNML
005      
20200829144309.0
007      
ta
008      
191108s2019 xr d f 000 0|eng||
009      
AR
024    7_
$a 10.32725/jab.2019.015 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Badura, Anna $u Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Department of Biopharmacy, Bydgoszcz, Poland
245    10
$a Prediction of semen quality using artificial neural network / $c Anna Badura, Urszula Marzec-Wróblewska, Piotr Kamiński, Paweł Łakota, Grzegorz Ludwikowski, Marek Szymański, Karolina Wasilow, Andżelika Lorenc, Adam Buciński
504    __
$a Literatura
520    9_
$a Examination of semen characteristics is routinely performed for fertility status investigation of the male partner of an infertile couple as well as for evaluation of the sperm donor candidate. A useful tool for preliminary assessment of semen characteristics might be an artificial neural network. Thus, the aim of the present study was to construct an artificial neural network, which could be used for predicting the result of semen analysis based on the basic questionnaire data. On the basis of eleven survey questions two models of artificial neural networks to predict semen parameters were developed. The first model aims to predict the overall performance and profile of semen. The second network was developed to predict the concentration of sperm. The network to evaluate sperm concentration proved to be the most efficient. 92.93% of the patients in the learning process were properly qualified for the group with a correct or incorrect result, while the result for the test set was 85.71%. This study suggests that an artificial neural network based on eleven survey questions might be a valuable tool for preliminary evaluation and prediction of the semen profile.
650    _2
$a lidé $7 D006801
650    _2
$a spermabanky $7 D013074
650    12
$a spermie $x abnormality $x růst a vývoj $x ultrastruktura $7 D013094
650    12
$a sperma $7 D012661
650    12
$a neuronové sítě $7 D016571
650    _2
$a mužská infertilita $7 D007248
650    12
$a analýza spermatu $x metody $x přístrojové vybavení $7 D055101
650    _2
$a počet spermií $x metody $x přístrojové vybavení $7 D013076
650    _2
$a motilita spermií $7 D013081
650    _2
$a průzkumy a dotazníky $7 D011795
700    1_
$a Marzec-Wróblewska, Urszula $u Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Department of Biopharmacy, Bydgoszcz, Poland
700    1_
$a Kamiński, Piotr $u Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, Department of Medical Biology and Biochemistry, Department of Ecology and Environmental Protection, Bydgoszcz, Poland; University of Zielona Góra, Faculty of Biological Sciences, Department of Biotechnology, Zielona Góra, Poland
700    1_
$a Łakota, Paweł $u University of Technology and Life Sciences, Faculty of Animal Biology, Department of Animal Biotechnology, Bydgoszcz, Poland; MAS, Poznań, Poland
700    1_
$a Ludwikowski, Grzegorz $u Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Obstetrics, Bydgoszcz, Poland
700    1_
$a Szymański, Marek $u Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, University Hospital No. 2, Department of Obstetrics, Female Pathology and Oncological Gynecology, Bydgoszcz, Poland; NZOZ Medical Center Genesis Infertility Treatment Clinic, Bydgoszcz, Poland
700    1_
$a Wasilow, Karolina $u NZOZ Medical Center Genesis Infertility Treatment Clinic, Bydgoszcz, Poland; Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Medicine, University Hospital No. 2, Family Medicine Clinic, Bydgoszcz, Poland
700    1_
$a Lorenc, Andżelika $u Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Department of Biopharmacy, Bydgoszcz, Poland
700    1_
$a Buciński, Adam $u Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, Faculty of Pharmacy, Department of Biopharmacy, Bydgoszcz, Poland
773    0_
$t Journal of applied biomedicine $x 1214-021X $g Roč. 17, č. 3 (2019), s. 167-174 $w MED00012667
856    41
$u https://jab.zsf.jcu.cz/pdfs/jab/2019/03/03.pdf $y plný text volně přístupný
910    __
$a ABA008 $b B 2301 $c 1249 $y p $z 0
990    __
$a 20191108081817 $b ABA008
991    __
$a 20200829144311 $b ABA008
999    __
$a ok $b bmc $g 1462719 $s 1077960
BAS    __
$a 3
BMC    __
$a 2019 $b 17 $c 3 $d 167-174 $i 1214-021X $m Journal of Applied Biomedicine $x MED00012667
LZP    __
$c NLK183 $d 20200829 $a NLK 2019-51/vt

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...