Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Comparative analysis of murine T-cell receptor repertoires

M. Izraelson, TO. Nakonechnaya, B. Moltedo, ES. Egorov, SA. Kasatskaya, EV. Putintseva, IZ. Mamedov, DB. Staroverov, II. Shemiakina, MY. Zakharova, AN. Davydov, DA. Bolotin, M. Shugay, DM. Chudakov, AY. Rudensky, OV. Britanova,

. 2018 ; 153 (2) : 133-144. [pub] 20171127

Language English Country England, Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't, Review

E-resources Online Full text

NLK Free Medical Journals from 1958 to 1 year ago
PubMed Central from 1958 to 2021
Medline Complete (EBSCOhost) from 1958-01-01 to 1 year ago
Wiley Free Content from 1996 to 1 year ago

For understanding the rules and laws of adaptive immunity, high-throughput profiling of T-cell receptor (TCR) repertoires becomes a powerful tool. The structure of TCR repertoires is instructive even before the antigen specificity of each particular receptor becomes available. It embodies information about the thymic and peripheral selection of T cells; the readiness of an adaptive immunity to withstand new challenges; the character, magnitude and memory of immune responses; and the aetiological and functional proximity of T-cell subsets. Here, we describe our current analytical approaches for the comparative analysis of murine TCR repertoires, and show several examples of how these approaches can be applied for particular experimental settings. We analyse the efficiency of different metrics used for estimation of repertoire diversity, repertoire overlap, V-gene and J-gene segments usage similarity, and amino acid composition of CDR3. We discuss basic differences of these metrics and their advantages and limitations in different experimental models, and we provide guidelines for choosing an efficient way to lead a comparative analysis of TCR repertoires. Applied to the various known and newly developed mouse models, such analysis should allow us to disentangle multiple sophisticated puzzles in adaptive immunity.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18033620
003      
CZ-PrNML
005      
20181026113913.0
007      
ta
008      
181008s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/imm.12857 $2 doi
035    __
$a (PubMed)29080364
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Izraelson, Mark $u Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia. Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. Pirogov Russian National Research Medical University, Moscow, Russia.
245    10
$a Comparative analysis of murine T-cell receptor repertoires / $c M. Izraelson, TO. Nakonechnaya, B. Moltedo, ES. Egorov, SA. Kasatskaya, EV. Putintseva, IZ. Mamedov, DB. Staroverov, II. Shemiakina, MY. Zakharova, AN. Davydov, DA. Bolotin, M. Shugay, DM. Chudakov, AY. Rudensky, OV. Britanova,
520    9_
$a For understanding the rules and laws of adaptive immunity, high-throughput profiling of T-cell receptor (TCR) repertoires becomes a powerful tool. The structure of TCR repertoires is instructive even before the antigen specificity of each particular receptor becomes available. It embodies information about the thymic and peripheral selection of T cells; the readiness of an adaptive immunity to withstand new challenges; the character, magnitude and memory of immune responses; and the aetiological and functional proximity of T-cell subsets. Here, we describe our current analytical approaches for the comparative analysis of murine TCR repertoires, and show several examples of how these approaches can be applied for particular experimental settings. We analyse the efficiency of different metrics used for estimation of repertoire diversity, repertoire overlap, V-gene and J-gene segments usage similarity, and amino acid composition of CDR3. We discuss basic differences of these metrics and their advantages and limitations in different experimental models, and we provide guidelines for choosing an efficient way to lead a comparative analysis of TCR repertoires. Applied to the various known and newly developed mouse models, such analysis should allow us to disentangle multiple sophisticated puzzles in adaptive immunity.
650    _2
$a zvířata $7 D000818
650    _2
$a hypervariabilní oblasti $x genetika $x imunologie $7 D022801
650    _2
$a buněčná imunita $x fyziologie $7 D007111
650    _2
$a myši $7 D051379
650    _2
$a T-lymfocyty - podskupiny $x cytologie $x imunologie $7 D016176
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Nakonechnaya, Tatiana O $u Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia. Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. Pirogov Russian National Research Medical University, Moscow, Russia.
700    1_
$a Moltedo, Bruno $u Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
700    1_
$a Egorov, Evgeniy S $u Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia. Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. Pirogov Russian National Research Medical University, Moscow, Russia.
700    1_
$a Kasatskaya, Sofya A $u Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. Pirogov Russian National Research Medical University, Moscow, Russia.
700    1_
$a Putintseva, Ekaterina V $u Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
700    1_
$a Mamedov, Ilgar Z $u Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia. Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. Pirogov Russian National Research Medical University, Moscow, Russia.
700    1_
$a Staroverov, Dmitriy B $u Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia. Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. Pirogov Russian National Research Medical University, Moscow, Russia.
700    1_
$a Shemiakina, Irina I $u Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
700    1_
$a Zakharova, Maria Y $u Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
700    1_
$a Davydov, Alexey N $u Central European Institute of Technology, Brno, Czech Republic.
700    1_
$a Bolotin, Dmitriy A $u Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. Pirogov Russian National Research Medical University, Moscow, Russia. MiLaboratory LLC, Skolkovo Innovation Centre, Moscow, Russia.
700    1_
$a Shugay, Mikhail $u Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia. Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. Pirogov Russian National Research Medical University, Moscow, Russia. Central European Institute of Technology, Brno, Czech Republic. Centre for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Skolkovo, Russia.
700    1_
$a Chudakov, Dmitriy M $u Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia. Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. Pirogov Russian National Research Medical University, Moscow, Russia. Central European Institute of Technology, Brno, Czech Republic. Centre for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Skolkovo, Russia.
700    1_
$a Rudensky, Alexander Y $u Howard Hughes Medical Institute and Immunology Program, Ludwig Center at Memorial Sloan Kettering Cancer Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
700    1_
$a Britanova, Olga V $u Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russia. Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia. Pirogov Russian National Research Medical University, Moscow, Russia.
773    0_
$w MED00009850 $t Immunology $x 1365-2567 $g Roč. 153, č. 2 (2018), s. 133-144
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29080364 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20181008 $b ABA008
991    __
$a 20181026114424 $b ABA008
999    __
$a ok $b bmc $g 1340229 $s 1030614
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 153 $c 2 $d 133-144 $e 20171127 $i 1365-2567 $m Immunology $n Immunology $x MED00009850
LZP    __
$a Pubmed-20181008

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...