Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Metformin attenuates myocardium dicarbonyl stress induced by chronic hypertriglyceridemia

H. Malinska, V. Škop, J. Trnovska, I. Markova, P. Svoboda, L. Kazdova, M. Haluzik

. 2018 ; 67 (2) : 181-189. [pub] 20171110

Language English Country Czech Republic

Document type Journal Article

Reactive dicarbonyls stimulate production of advanced glycation endproducts, increase oxidative stress and inflammation and contribute to the development of vascular complications. We measured concentrations of dicarbonyls - methylglyoxal (MG), glyoxal (GL) and 3-deoxyglucosone (3-DG) - in the heart and kidney of a model of metabolic syndrome - hereditary hypertriglyceridemic rats (HHTg) and explored its modulation by metformin. Adult HHTg rats were fed a standard diet with or without metformin (300 mg/kg b.w.) and dicarbonyl levels and metabolic parameters were measured. HHTg rats had markedly elevated serum levels of triacylglycerols (p<0.001), FFA (p<0.01) and hepatic triacylglycerols (p<0.001) along with increased concentrations of reactive dicarbonyls in myocardium (MG: p<0.001; GL: p<0.01; 3-DG: p<0.01) and kidney cortex (MG: p<0.01). Metformin treatment significantly reduced reactive dicarbonyls in the myocardium (MG: p<0.05, GL: p<0.05, 3-DG: p<0.01) along with increase of myocardial concentrations of reduced glutathione (p<0.01) and glyoxalase 1 mRNA expression (p<0.05). Metformin did not have any significant effect on dicarbonyls, glutathione or on glyoxalase 1 expression in kidney cortex. Chronically elevated hypertriglyceridemia was associated with increased levels of dicarbonyls in heart and kidney. Beneficial effects of metformin on reactive dicarbonyls and glyoxalase in the heart could contribute to its cardioprotective effects.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc18036424
003      
CZ-PrNML
005      
20181102123634.0
007      
ta
008      
181030s2018 xr d f 000 0|eng||
009      
AR
024    7_
$a 10.33549/physiolres.933606 $2 doi
035    __
$a (PubMed)29137475
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xr
100    1_
$a Malínská, Hana $u Department of Cardio-Metabolic Research, Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic. $7 xx0158953
245    10
$a Metformin attenuates myocardium dicarbonyl stress induced by chronic hypertriglyceridemia / $c H. Malinska, V. Škop, J. Trnovska, I. Markova, P. Svoboda, L. Kazdova, M. Haluzik
520    9_
$a Reactive dicarbonyls stimulate production of advanced glycation endproducts, increase oxidative stress and inflammation and contribute to the development of vascular complications. We measured concentrations of dicarbonyls - methylglyoxal (MG), glyoxal (GL) and 3-deoxyglucosone (3-DG) - in the heart and kidney of a model of metabolic syndrome - hereditary hypertriglyceridemic rats (HHTg) and explored its modulation by metformin. Adult HHTg rats were fed a standard diet with or without metformin (300 mg/kg b.w.) and dicarbonyl levels and metabolic parameters were measured. HHTg rats had markedly elevated serum levels of triacylglycerols (p<0.001), FFA (p<0.01) and hepatic triacylglycerols (p<0.001) along with increased concentrations of reactive dicarbonyls in myocardium (MG: p<0.001; GL: p<0.01; 3-DG: p<0.01) and kidney cortex (MG: p<0.01). Metformin treatment significantly reduced reactive dicarbonyls in the myocardium (MG: p<0.05, GL: p<0.05, 3-DG: p<0.01) along with increase of myocardial concentrations of reduced glutathione (p<0.01) and glyoxalase 1 mRNA expression (p<0.05). Metformin did not have any significant effect on dicarbonyls, glutathione or on glyoxalase 1 expression in kidney cortex. Chronically elevated hypertriglyceridemia was associated with increased levels of dicarbonyls in heart and kidney. Beneficial effects of metformin on reactive dicarbonyls and glyoxalase in the heart could contribute to its cardioprotective effects.
650    _2
$a zvířata $7 D000818
650    _2
$a deoxyglukosa $x analogy a deriváty $x metabolismus $7 D003847
650    _2
$a dieta $7 D004032
650    _2
$a glutathion $x metabolismus $7 D005978
650    _2
$a glyoxal $x metabolismus $7 D006037
650    _2
$a hypertriglyceridemie $x farmakoterapie $x genetika $x patofyziologie $7 D015228
650    _2
$a hypoglykemika $x terapeutické užití $7 D007004
650    _2
$a laktoylglutathionlyasa $x metabolismus $7 D007791
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a metformin $x terapeutické užití $7 D008687
650    _2
$a myokard $x metabolismus $7 D009206
650    _2
$a pyruvaldehyd $x metabolismus $7 D011765
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a potkani Wistar $7 D017208
650    _2
$a fyziologický stres $7 D013312
655    _2
$a časopisecké články $7 D016428
700    1_
$a Škop, Vojtěch $7 xx0121451
700    1_
$a Trnovská, Jaroslava. $7 xx0229211
700    1_
$a Marková, Irena. $7 xx0161888
700    1_
$a Svoboda, P. $7 _AN047392
700    1_
$a Kazdová, Ludmila, $d 1938- $7 xx0053119
700    1_
$a Haluzík, Martin, $d 1970- $7 xx0000707
773    0_
$w MED00003824 $t Physiological research $x 1802-9973 $g Roč. 67, č. 2 (2018), s. 181-189
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29137475 $y Pubmed
910    __
$a ABA008 $b A 4120 $c 266 $y 4 $z 0
990    __
$a 20181030 $b ABA008
991    __
$a 20181102075140 $b ABA008
999    __
$a ok $b bmc $g 1347846 $s 1033448
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 67 $c 2 $d 181-189 $e 20171110 $i 1802-9973 $m Physiological research $n Physiol. Res. (Print) $x MED00003824
LZP    __
$b NLK118 $a Pubmed-20181030

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...