-
Je něco špatně v tomto záznamu ?
Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model
SJ. Mambou, P. Maresova, O. Krejcar, A. Selamat, K. Kuca,
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články, přehledy
NLK
Directory of Open Access Journals
od 2001
PubMed Central
od 2003
Europe PubMed Central
od 2003
ProQuest Central
od 2001-01-01
Open Access Digital Library
od 2001-01-01
Open Access Digital Library
od 2003-01-01
Health & Medicine (ProQuest)
od 2001-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2001
PubMed
30149621
DOI
10.3390/s18092799
Knihovny.cz E-zdroje
- MeSH
- infračervené záření * MeSH
- lidé MeSH
- nádory prsu diagnostické zobrazování patologie MeSH
- počítačové zpracování obrazu MeSH
- prsy diagnostické zobrazování patologie MeSH
- senzitivita a specificita MeSH
- strojové učení * MeSH
- termografie * MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Women's breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. Over the past 20 years several techniques have been proposed for this purpose, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Additionally, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic techniques. Our review of the literature first explored infrared digital imaging, which assumes that a basic thermal comparison between a healthy breast and a breast with cancer always shows an increase in thermal activity in the precancerous tissues and the areas surrounding developing breast cancer. Furthermore, through our research, we realized that a Computer-Aided Diagnostic (CAD) undertaken through infrared image processing could not be achieved without a model such as the well-known hemispheric model. The novel contribution of this paper is the production of a comparative study of several breast cancer detection techniques using powerful computer vision techniques and deep learning models.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19000420
- 003
- CZ-PrNML
- 005
- 20190107104226.0
- 007
- ta
- 008
- 190107s2018 sz f 000 0|eng||
- 024 7_
- $a 10.3390/s18092799 $2 doi
- 035 __
- $a (PubMed)30149621
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Mambou, Sebastien Jean $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic. jean.mambou@uhk.cz.
- 245 10
- $a Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model / $c SJ. Mambou, P. Maresova, O. Krejcar, A. Selamat, K. Kuca,
- 520 9_
- $a Women's breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. Over the past 20 years several techniques have been proposed for this purpose, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Additionally, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic techniques. Our review of the literature first explored infrared digital imaging, which assumes that a basic thermal comparison between a healthy breast and a breast with cancer always shows an increase in thermal activity in the precancerous tissues and the areas surrounding developing breast cancer. Furthermore, through our research, we realized that a Computer-Aided Diagnostic (CAD) undertaken through infrared image processing could not be achieved without a model such as the well-known hemispheric model. The novel contribution of this paper is the production of a comparative study of several breast cancer detection techniques using powerful computer vision techniques and deep learning models.
- 650 _2
- $a prsy $x diagnostické zobrazování $x patologie $7 D001940
- 650 _2
- $a nádory prsu $x diagnostické zobrazování $x patologie $7 D001943
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 12
- $a infračervené záření $7 D007259
- 650 12
- $a strojové učení $7 D000069550
- 650 _2
- $a senzitivita a specificita $7 D012680
- 650 12
- $a termografie $7 D013817
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a přehledy $7 D016454
- 700 1_
- $a Maresova, Petra $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic. petra.maresova@uhk.cz.
- 700 1_
- $a Krejcar, Ondrej $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic. ondrej.krejcar@uhk.cz.
- 700 1_
- $a Selamat, Ali $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic. aselamat@utm.my. Faculty of Computing, Universiti Teknologi Malaysia, Johor 81310, Malaysia. aselamat@utm.my.
- 700 1_
- $a Kuca, Kamil $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic. kamil.kuca@uhk.cz.
- 773 0_
- $w MED00008309 $t Sensors (Basel) $x 1424-8220 $g Roč. 18, č. 9 (2018), s.
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30149621 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a
- 990 __
- $a 20190107 $b ABA008
- 999 __
- $a ok $b bmc $g 1364506 $s 1038543
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 18 $c 9 $e 20180825 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
- LZP __
- $a Pubmed-20190107