• Je něco špatně v tomto záznamu ?

Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model

SJ. Mambou, P. Maresova, O. Krejcar, A. Selamat, K. Kuca,

. 2018 ; 18 (9) : . [pub] 20180825

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc19000420

Women's breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. Over the past 20 years several techniques have been proposed for this purpose, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Additionally, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic techniques. Our review of the literature first explored infrared digital imaging, which assumes that a basic thermal comparison between a healthy breast and a breast with cancer always shows an increase in thermal activity in the precancerous tissues and the areas surrounding developing breast cancer. Furthermore, through our research, we realized that a Computer-Aided Diagnostic (CAD) undertaken through infrared image processing could not be achieved without a model such as the well-known hemispheric model. The novel contribution of this paper is the production of a comparative study of several breast cancer detection techniques using powerful computer vision techniques and deep learning models.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19000420
003      
CZ-PrNML
005      
20190107104226.0
007      
ta
008      
190107s2018 sz f 000 0|eng||
024    7_
$a 10.3390/s18092799 $2 doi
035    __
$a (PubMed)30149621
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Mambou, Sebastien Jean $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic. jean.mambou@uhk.cz.
245    10
$a Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model / $c SJ. Mambou, P. Maresova, O. Krejcar, A. Selamat, K. Kuca,
520    9_
$a Women's breasts are susceptible to developing cancer; this is supported by a recent study from 2016 showing that 2.8 million women worldwide had already been diagnosed with breast cancer that year. The medical care of a patient with breast cancer is costly and, given the cost and value of the preservation of the health of the citizen, the prevention of breast cancer has become a priority in public health. Over the past 20 years several techniques have been proposed for this purpose, such as mammography, which is frequently used for breast cancer diagnosis. However, false positives of mammography can occur in which the patient is diagnosed positive by another technique. Additionally, the potential side effects of using mammography may encourage patients and physicians to look for other diagnostic techniques. Our review of the literature first explored infrared digital imaging, which assumes that a basic thermal comparison between a healthy breast and a breast with cancer always shows an increase in thermal activity in the precancerous tissues and the areas surrounding developing breast cancer. Furthermore, through our research, we realized that a Computer-Aided Diagnostic (CAD) undertaken through infrared image processing could not be achieved without a model such as the well-known hemispheric model. The novel contribution of this paper is the production of a comparative study of several breast cancer detection techniques using powerful computer vision techniques and deep learning models.
650    _2
$a prsy $x diagnostické zobrazování $x patologie $7 D001940
650    _2
$a nádory prsu $x diagnostické zobrazování $x patologie $7 D001943
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $7 D007091
650    12
$a infračervené záření $7 D007259
650    12
$a strojové učení $7 D000069550
650    _2
$a senzitivita a specificita $7 D012680
650    12
$a termografie $7 D013817
655    _2
$a časopisecké články $7 D016428
655    _2
$a přehledy $7 D016454
700    1_
$a Maresova, Petra $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic. petra.maresova@uhk.cz.
700    1_
$a Krejcar, Ondrej $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic. ondrej.krejcar@uhk.cz.
700    1_
$a Selamat, Ali $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic. aselamat@utm.my. Faculty of Computing, Universiti Teknologi Malaysia, Johor 81310, Malaysia. aselamat@utm.my.
700    1_
$a Kuca, Kamil $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic. kamil.kuca@uhk.cz.
773    0_
$w MED00008309 $t Sensors (Basel) $x 1424-8220 $g Roč. 18, č. 9 (2018), s.
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30149621 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a
990    __
$a 20190107 $b ABA008
999    __
$a ok $b bmc $g 1364506 $s 1038543
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 18 $c 9 $e 20180825 $i 1424-8220 $m Sensors $n Sensors Basel $x MED00008309
LZP    __
$a Pubmed-20190107

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...