Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase

M. Figiel, M. Krepl, S. Park, J. Poznański, K. Skowronek, A. Gołąb, T. Ha, J. Šponer, M. Nowotny,

. 2018 ; 293 (1) : 191-202. [pub] 20171109

Language English Country United States

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.

HIV-1 reverse transcriptase (RT) possesses both DNA polymerase activity and RNase H activity that act in concert to convert single-stranded RNA of the viral genome to double-stranded DNA that is then integrated into the DNA of the infected cell. Reverse transcriptase-catalyzed reverse transcription critically relies on the proper generation of a polypurine tract (PPT) primer. However, the mechanism of PPT primer generation and the features of the PPT sequence that are critical for its recognition by HIV-1 RT remain unclear. Here, we used a chemical cross-linking method together with molecular dynamics simulations and single-molecule assays to study the mechanism of PPT primer generation. We found that the PPT was specifically and properly recognized within covalently tethered HIV-1 RT-nucleic acid complexes. These findings indicated that recognition of the PPT occurs within a stable catalytic complex after its formation. We found that this unique recognition is based on two complementary elements that rely on the PPT sequence: RNase H sequence preference and incompatibility of the poly(rA/dT) tract of the PPT with the nucleic acid conformation that is required for RNase H cleavage. The latter results from rigidity of the poly(rA/dT) tract and leads to base-pair slippage of this sequence upon deformation into a catalytically relevant geometry. In summary, our results reveal an unexpected mechanism of PPT primer generation based on specific dynamic properties of the poly(rA/dT) segment and help advance our understanding of the mechanisms in viral RNA reverse transcription.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19001101
003      
CZ-PrNML
005      
20190121115537.0
007      
ta
008      
190107s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1074/jbc.M117.798256 $2 doi
035    __
$a (PubMed)29122886
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Figiel, Małgorzata $u Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
245    10
$a Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase / $c M. Figiel, M. Krepl, S. Park, J. Poznański, K. Skowronek, A. Gołąb, T. Ha, J. Šponer, M. Nowotny,
520    9_
$a HIV-1 reverse transcriptase (RT) possesses both DNA polymerase activity and RNase H activity that act in concert to convert single-stranded RNA of the viral genome to double-stranded DNA that is then integrated into the DNA of the infected cell. Reverse transcriptase-catalyzed reverse transcription critically relies on the proper generation of a polypurine tract (PPT) primer. However, the mechanism of PPT primer generation and the features of the PPT sequence that are critical for its recognition by HIV-1 RT remain unclear. Here, we used a chemical cross-linking method together with molecular dynamics simulations and single-molecule assays to study the mechanism of PPT primer generation. We found that the PPT was specifically and properly recognized within covalently tethered HIV-1 RT-nucleic acid complexes. These findings indicated that recognition of the PPT occurs within a stable catalytic complex after its formation. We found that this unique recognition is based on two complementary elements that rely on the PPT sequence: RNase H sequence preference and incompatibility of the poly(rA/dT) tract of the PPT with the nucleic acid conformation that is required for RNase H cleavage. The latter results from rigidity of the poly(rA/dT) tract and leads to base-pair slippage of this sequence upon deformation into a catalytically relevant geometry. In summary, our results reveal an unexpected mechanism of PPT primer generation based on specific dynamic properties of the poly(rA/dT) segment and help advance our understanding of the mechanisms in viral RNA reverse transcription.
650    _2
$a sekvence nukleotidů $7 D001483
650    _2
$a krystalografie rentgenová $x metody $7 D018360
650    _2
$a DNA primery $x biosyntéza $x chemie $7 D017931
650    _2
$a DNA virů $7 D004279
650    _2
$a HIV reverzní transkriptasa $x metabolismus $x fyziologie $7 D054303
650    _2
$a HIV-1 $x genetika $7 D015497
650    _2
$a konformace nukleové kyseliny $7 D009690
650    _2
$a nukleové kyseliny $7 D009696
650    _2
$a poly A $7 D011061
650    _2
$a poly U $7 D011072
650    _2
$a polynukleotidy $7 D011119
650    _2
$a puriny $x chemie $7 D011687
650    _2
$a RNA virová $x chemie $7 D012367
650    _2
$a ribonukleasa H $x metabolismus $7 D016914
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Krepl, Miroslav $u Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 771 46 Olomouc, Czech Republic
700    1_
$a Park, Sangwoo $u Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, USA
700    1_
$a Poznański, Jarosław $u Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
700    1_
$a Skowronek, Krzysztof $u Biophysics Core Facility, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
700    1_
$a Gołąb, Agnieszka $u Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
700    1_
$a Ha, Taekjip $u Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, USA Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21205, USA Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
700    1_
$a Šponer, Jiří $u Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 771 46 Olomouc, Czech Republic
700    1_
$a Nowotny, Marcin $u Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
773    0_
$w MED00002546 $t The Journal of biological chemistry $x 1083-351X $g Roč. 293, č. 1 (2018), s. 191-202
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29122886 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190107 $b ABA008
991    __
$a 20190121115755 $b ABA008
999    __
$a ok $b bmc $g 1364002 $s 1039224
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 293 $c 1 $d 191-202 $e 20171109 $i 1083-351X $m The Journal of biological chemistry $n J Biol Chem $x MED00002546
LZP    __
$a Pubmed-20190107

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...