-
Something wrong with this record ?
Cut-off optimization for 13C-urea breath test in a community-based trial by mathematic, histology and serology approach
ZX. Li, LL. Huang, C. Liu, L. Formichella, Y. Zhang, YM. Wang, L. Zhang, JL. Ma, WD. Liu, K. Ulm, JX. Wang, L. Zhang, M. Bajbouj, M. Li, M. Vieth, M. Quante, T. Zhou, LH. Wang, S. Suchanek, E. Soutschek, R. Schmid, M. Classen, WC. You, M....
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't, Validation Study
NLK
Directory of Open Access Journals
from 2011
Free Medical Journals
from 2011
Nature Open Access
from 2011-12-01
PubMed Central
from 2011
Europe PubMed Central
from 2011
ProQuest Central
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Open Access Digital Library
from 2011-01-01
Health & Medicine (ProQuest)
from 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2011
Springer Nature OA/Free Journals
from 2011-12-01
- MeSH
- Algorithms * MeSH
- Breath Tests methods MeSH
- Molecular Diagnostic Techniques standards MeSH
- Adult MeSH
- Helicobacter Infections diagnosis MeSH
- Carbon Isotopes MeSH
- Clinical Trials as Topic MeSH
- Middle Aged MeSH
- Humans MeSH
- Limit of Detection MeSH
- Urea MeSH
- Stomach Neoplasms diagnosis microbiology MeSH
- Models, Theoretical MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Validation Study MeSH
The performance of diagnostic tests in intervention trials of Helicobacter pylori (H.pylori) eradication is crucial, since even minor inaccuracies can have major impact. To determine the cut-off point for 13C-urea breath test (13C-UBT) and to assess if it can be further optimized by serologic testing, mathematic modeling, histopathology and serologic validation were applied. A finite mixture model (FMM) was developed in 21,857 subjects, and an independent validation by modified Giemsa staining was conducted in 300 selected subjects. H.pylori status was determined using recomLine H.pylori assay in 2,113 subjects with a borderline 13C-UBT results. The delta over baseline-value (DOB) of 3.8 was an optimal cut-off point by a FMM in modelling dataset, which was further validated as the most appropriate cut-off point by Giemsa staining (sensitivity = 94.53%, specificity = 92.93%). In the borderline population, 1,468 subjects were determined as H.pylori positive by recomLine (69.5%). A significant correlation between the number of positive H.pylori serum responses and DOB value was found (rs = 0.217, P < 0.001). A mathematical approach such as FMM might be an alternative measure in optimizing the cut-off point for 13C-UBT in community-based studies, and a second method to determine H.pylori status for subjects with borderline value of 13C-UBT was necessary and recommended.
Charles University Central Military Hospital Prague Ovocný trh 3 5 Prague 11636 Czech Republic
Healthy Bureau of Linqu County Shandong China
Institute of Pathology Klinikum Bayreuth Preuschwitzer Str 101 95445 Bayreuth Germany
Mikrogen GmbH Floriansbogen 2 4 Neuried Munich 82061 Germany
Technische Universität München Klinikum rechts der Isar Trogerstr 30 81675 Munich Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19001255
- 003
- CZ-PrNML
- 005
- 20191118124424.0
- 007
- ta
- 008
- 190107s2017 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-017-02180-7 $2 doi
- 035 __
- $a (PubMed)28522798
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Li, Zhe-Xuan $u Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, 52 Fu-cheng Road, Hai-dian District, Beijing, 100142, China.
- 245 10
- $a Cut-off optimization for 13C-urea breath test in a community-based trial by mathematic, histology and serology approach / $c ZX. Li, LL. Huang, C. Liu, L. Formichella, Y. Zhang, YM. Wang, L. Zhang, JL. Ma, WD. Liu, K. Ulm, JX. Wang, L. Zhang, M. Bajbouj, M. Li, M. Vieth, M. Quante, T. Zhou, LH. Wang, S. Suchanek, E. Soutschek, R. Schmid, M. Classen, WC. You, M. Gerhard, KF. Pan,
- 520 9_
- $a The performance of diagnostic tests in intervention trials of Helicobacter pylori (H.pylori) eradication is crucial, since even minor inaccuracies can have major impact. To determine the cut-off point for 13C-urea breath test (13C-UBT) and to assess if it can be further optimized by serologic testing, mathematic modeling, histopathology and serologic validation were applied. A finite mixture model (FMM) was developed in 21,857 subjects, and an independent validation by modified Giemsa staining was conducted in 300 selected subjects. H.pylori status was determined using recomLine H.pylori assay in 2,113 subjects with a borderline 13C-UBT results. The delta over baseline-value (DOB) of 3.8 was an optimal cut-off point by a FMM in modelling dataset, which was further validated as the most appropriate cut-off point by Giemsa staining (sensitivity = 94.53%, specificity = 92.93%). In the borderline population, 1,468 subjects were determined as H.pylori positive by recomLine (69.5%). A significant correlation between the number of positive H.pylori serum responses and DOB value was found (rs = 0.217, P < 0.001). A mathematical approach such as FMM might be an alternative measure in optimizing the cut-off point for 13C-UBT in community-based studies, and a second method to determine H.pylori status for subjects with borderline value of 13C-UBT was necessary and recommended.
- 650 _2
- $a dospělí $7 D000328
- 650 12
- $a algoritmy $7 D000465
- 650 _2
- $a dechové testy $x metody $7 D001944
- 650 _2
- $a izotopy uhlíku $7 D002247
- 650 _2
- $a klinické zkoušky jako téma $7 D002986
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a infekce vyvolané Helicobacter pylori $x diagnóza $7 D016481
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a limita detekce $7 D057230
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a teoretické modely $7 D008962
- 650 _2
- $a diagnostické techniky molekulární $x normy $7 D025202
- 650 _2
- $a nádory žaludku $x diagnóza $x mikrobiologie $7 D013274
- 650 _2
- $a močovina $7 D014508
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a validační studie $7 D023361
- 700 1_
- $a Huang, Lei-Lei $u Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, 52 Fu-cheng Road, Hai-dian District, Beijing, 100142, China.
- 700 1_
- $a Liu, Cong $u Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, 52 Fu-cheng Road, Hai-dian District, Beijing, 100142, China.
- 700 1_
- $a Formichella, Luca $u Technische Universität München, Klinikum rechts der Isar, Trogerstr. 30, 81675, Munich, Germany.
- 700 1_
- $a Zhang, Yang $u Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, 52 Fu-cheng Road, Hai-dian District, Beijing, 100142, China.
- 700 1_
- $a Wang, Yu-Mei $u Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, 52 Fu-cheng Road, Hai-dian District, Beijing, 100142, China.
- 700 1_
- $a Zhang, Lian $u Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, 52 Fu-cheng Road, Hai-dian District, Beijing, 100142, China.
- 700 1_
- $a Ma, Jun-Ling $u Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, 52 Fu-cheng Road, Hai-dian District, Beijing, 100142, China.
- 700 1_
- $a Liu, Wei-Dong $u Healthy Bureau of Linqu County, Shandong, China.
- 700 1_
- $a Ulm, Kurt $u Technische Universität München, Klinikum rechts der Isar, Trogerstr. 30, 81675, Munich, Germany.
- 700 1_
- $a Wang, Jian-Xi $u Healthy Bureau of Linqu County, Shandong, China.
- 700 1_
- $a Zhang, Lei $u Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, 52 Fu-cheng Road, Hai-dian District, Beijing, 100142, China.
- 700 1_
- $a Bajbouj, Monther $u Technische Universität München, Klinikum rechts der Isar, Trogerstr. 30, 81675, Munich, Germany.
- 700 1_
- $a Li, Ming $u Healthy Bureau of Linqu County, Shandong, China.
- 700 1_
- $a Vieth, Michael $u Institute of Pathology, Klinikum Bayreuth, Preuschwitzer Str. 101, 95445, Bayreuth, Germany.
- 700 1_
- $a Quante, Michael $u Technische Universität München, Klinikum rechts der Isar, Trogerstr. 30, 81675, Munich, Germany.
- 700 1_
- $a Zhou, Tong $u Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, 52 Fu-cheng Road, Hai-dian District, Beijing, 100142, China.
- 700 1_
- $a Wang, Le-Hua $u Healthy Bureau of Linqu County, Shandong, China.
- 700 1_
- $a Suchanek, Stepan $u Charles University, Central Military Hospital Prague, Ovocný trh 3-5, Prague, 11636, Czech Republic.
- 700 1_
- $a Soutschek, Erwin $u Mikrogen GmbH, Floriansbogen 2-4, Neuried, Munich, 82061, Germany.
- 700 1_
- $a Schmid, Roland $u Technische Universität München, Klinikum rechts der Isar, Trogerstr. 30, 81675, Munich, Germany.
- 700 1_
- $a Classen, Meinhard, $d 1936-2019 $7 nlk20030128123 $u Technische Universität München, Klinikum rechts der Isar, Trogerstr. 30, 81675, Munich, Germany. International Digestive Cancer Alliance, 81541, Munich, Germany.
- 700 1_
- $a You, Wei-Cheng $u Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, 52 Fu-cheng Road, Hai-dian District, Beijing, 100142, China.
- 700 1_
- $a Gerhard, Markus $u Technische Universität München, Klinikum rechts der Isar, Trogerstr. 30, 81675, Munich, Germany. Markus.Gerhard@tum.de. German Centre of Infection Research, partner site Munich, Munich, Germany. Markus.Gerhard@tum.de.
- 700 1_
- $a Pan, Kai-Feng $u Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, 52 Fu-cheng Road, Hai-dian District, Beijing, 100142, China. pankaifeng2002@yahoo.com.
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 7, č. 1 (2017), s. 2072
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28522798 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190107 $b ABA008
- 991 __
- $a 20191118124705 $b ABA008
- 999 __
- $a ok $b bmc $g 1365145 $s 1039378
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 7 $c 1 $d 2072 $e 20170518 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- LZP __
- $a Pubmed-20190107