• Je něco špatně v tomto záznamu ?

Advances on Automatic Speech Analysis for Early Detection of Alzheimer Disease: A Non-linear Multi-task Approach

K. Lopez-de-Ipina, U. Martinez-de-Lizarduy, PM. Calvo, J. Mekyska, B. Beitia, N. Barroso, A. Estanga, M. Tainta, M. Ecay-Torres,

. 2018 ; 15 (2) : 139-148.

Jazyk angličtina Země Spojené arabské emiráty

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19013006

OBJECTIVE: Nowadays proper detection of cognitive impairment has become a challenge for the scientific community. Alzheimer's Disease (AD), the most common cause of dementia, has a high prevalence that is increasing at a fast pace towards epidemic level. In the not-so-distant future this fact could have a dramatic social and economic impact. In this scenario, an early and accurate diagnosis of AD could help to decrease its effects on patients, relatives and society. Over the last decades there have been useful advances not only in classic assessment techniques, but also in novel non-invasive screening methodologies. METHODS: Among these methods, automatic analysis of speech -one of the first damaged skills in AD patients- is a natural and useful low cost tool for diagnosis. RESULTS: In this paper a non-linear multi-task approach based on automatic speech analysis is presented. Three tasks with different language complexity levels are analyzed, and promising results that encourage a deeper assessment are obtained. Automatic classification was carried out by using classic Multilayer Perceptron (MLP) and Deep Learning by means of Convolutional Neural Networks (CNN) (biologically- inspired variants of MLPs) over the tasks with classic linear features, perceptual features, Castiglioni fractal dimension and Multiscale Permutation Entropy. CONCLUSION: Finally, the most relevant features are selected by means of the non-parametric Mann- Whitney U-test.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19013006
003      
CZ-PrNML
005      
20190411100820.0
007      
ta
008      
190405s2018 ts f 000 0|eng||
009      
AR
024    7_
$a 10.2174/1567205014666171120143800 $2 doi
035    __
$a (PubMed)29165084
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ts
100    1_
$a Lopez-de-Ipina, Karmele $u Department of Systems Engineering and Automation, Faculty of Engineering-Gipuzkoa, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia. Spain.
245    10
$a Advances on Automatic Speech Analysis for Early Detection of Alzheimer Disease: A Non-linear Multi-task Approach / $c K. Lopez-de-Ipina, U. Martinez-de-Lizarduy, PM. Calvo, J. Mekyska, B. Beitia, N. Barroso, A. Estanga, M. Tainta, M. Ecay-Torres,
520    9_
$a OBJECTIVE: Nowadays proper detection of cognitive impairment has become a challenge for the scientific community. Alzheimer's Disease (AD), the most common cause of dementia, has a high prevalence that is increasing at a fast pace towards epidemic level. In the not-so-distant future this fact could have a dramatic social and economic impact. In this scenario, an early and accurate diagnosis of AD could help to decrease its effects on patients, relatives and society. Over the last decades there have been useful advances not only in classic assessment techniques, but also in novel non-invasive screening methodologies. METHODS: Among these methods, automatic analysis of speech -one of the first damaged skills in AD patients- is a natural and useful low cost tool for diagnosis. RESULTS: In this paper a non-linear multi-task approach based on automatic speech analysis is presented. Three tasks with different language complexity levels are analyzed, and promising results that encourage a deeper assessment are obtained. Automatic classification was carried out by using classic Multilayer Perceptron (MLP) and Deep Learning by means of Convolutional Neural Networks (CNN) (biologically- inspired variants of MLPs) over the tasks with classic linear features, perceptual features, Castiglioni fractal dimension and Multiscale Permutation Entropy. CONCLUSION: Finally, the most relevant features are selected by means of the non-parametric Mann- Whitney U-test.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a Alzheimerova nemoc $x diagnóza $7 D000544
650    _2
$a kognitivní dysfunkce $x diagnóza $7 D060825
650    _2
$a kohortové studie $7 D015331
650    _2
$a deep learning $7 D000077321
650    12
$a diagnóza počítačová $x metody $7 D003936
650    _2
$a časná diagnóza $7 D042241
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a neuropsychologické testy $7 D009483
650    _2
$a nelineární dynamika $7 D017711
650    12
$a rozpoznávání automatizované $x metody $7 D010363
650    12
$a řeč $7 D013060
650    _2
$a měření tvorby řeči $7 D013068
650    _2
$a software pro rozpoznávání řeči $7 D049250
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Martinez-de-Lizarduy, Unai $u Department of Electronic Technology, Faculty of Engineering-Gipuzkoa, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia. Spain.
700    1_
$a Calvo, Pilar M $u Department of Systems Engineering and Automation, Faculty of Engineering-Gipuzkoa, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia. Spain.
700    1_
$a Mekyska, Jiri $u Department of Telecommunications, Brno University of Technology, Brno. Czech Republic.
700    1_
$a Beitia, Blanca $u Department of Applied Mathematics, Faculty of Engineering-Vitoria, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea(UPV/EHU), Donostia. Spain.
700    1_
$a Barroso, Nora $u Department of Systems Engineering and Automation, Faculty of Engineering-Gipuzkoa, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia. Spain.
700    1_
$a Estanga, Ainara $u Department of Neurology, CITA-Alzheimer Foundation, Donostia. Spain.
700    1_
$a Tainta, Milkel $u Department of Neurology, CITA-Alzheimer Foundation, Donostia. Spain.
700    1_
$a Ecay-Torres, Mirian $u Department of Neurology, CITA-Alzheimer Foundation, Donostia. Spain.
773    0_
$w MED00008816 $t Current Alzheimer research $x 1875-5828 $g Roč. 15, č. 2 (2018), s. 139-148
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29165084 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190405 $b ABA008
991    __
$a 20190411100837 $b ABA008
999    __
$a ok $b bmc $g 1392316 $s 1051311
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 15 $c 2 $d 139-148 $i 1875-5828 $m Current Alzheimer research $n Curr Alzheimer Res $x MED00008816
LZP    __
$a Pubmed-20190405

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...