-
Je něco špatně v tomto záznamu ?
Advances on Automatic Speech Analysis for Early Detection of Alzheimer Disease: A Non-linear Multi-task Approach
K. Lopez-de-Ipina, U. Martinez-de-Lizarduy, PM. Calvo, J. Mekyska, B. Beitia, N. Barroso, A. Estanga, M. Tainta, M. Ecay-Torres,
Jazyk angličtina Země Spojené arabské emiráty
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- Alzheimerova nemoc diagnóza MeSH
- časná diagnóza MeSH
- deep learning MeSH
- diagnóza počítačová * metody MeSH
- dospělí MeSH
- kognitivní dysfunkce diagnóza MeSH
- kohortové studie MeSH
- lidé středního věku MeSH
- lidé MeSH
- měření tvorby řeči MeSH
- nelineární dynamika MeSH
- neuropsychologické testy MeSH
- řeč * MeSH
- rozpoznávání automatizované * metody MeSH
- senioři MeSH
- software pro rozpoznávání řeči MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: Nowadays proper detection of cognitive impairment has become a challenge for the scientific community. Alzheimer's Disease (AD), the most common cause of dementia, has a high prevalence that is increasing at a fast pace towards epidemic level. In the not-so-distant future this fact could have a dramatic social and economic impact. In this scenario, an early and accurate diagnosis of AD could help to decrease its effects on patients, relatives and society. Over the last decades there have been useful advances not only in classic assessment techniques, but also in novel non-invasive screening methodologies. METHODS: Among these methods, automatic analysis of speech -one of the first damaged skills in AD patients- is a natural and useful low cost tool for diagnosis. RESULTS: In this paper a non-linear multi-task approach based on automatic speech analysis is presented. Three tasks with different language complexity levels are analyzed, and promising results that encourage a deeper assessment are obtained. Automatic classification was carried out by using classic Multilayer Perceptron (MLP) and Deep Learning by means of Convolutional Neural Networks (CNN) (biologically- inspired variants of MLPs) over the tasks with classic linear features, perceptual features, Castiglioni fractal dimension and Multiscale Permutation Entropy. CONCLUSION: Finally, the most relevant features are selected by means of the non-parametric Mann- Whitney U-test.
Department of Neurology CITA Alzheimer Foundation Donostia Spain
Department of Telecommunications Brno University of Technology Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19013006
- 003
- CZ-PrNML
- 005
- 20190411100820.0
- 007
- ta
- 008
- 190405s2018 ts f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.2174/1567205014666171120143800 $2 doi
- 035 __
- $a (PubMed)29165084
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ts
- 100 1_
- $a Lopez-de-Ipina, Karmele $u Department of Systems Engineering and Automation, Faculty of Engineering-Gipuzkoa, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia. Spain.
- 245 10
- $a Advances on Automatic Speech Analysis for Early Detection of Alzheimer Disease: A Non-linear Multi-task Approach / $c K. Lopez-de-Ipina, U. Martinez-de-Lizarduy, PM. Calvo, J. Mekyska, B. Beitia, N. Barroso, A. Estanga, M. Tainta, M. Ecay-Torres,
- 520 9_
- $a OBJECTIVE: Nowadays proper detection of cognitive impairment has become a challenge for the scientific community. Alzheimer's Disease (AD), the most common cause of dementia, has a high prevalence that is increasing at a fast pace towards epidemic level. In the not-so-distant future this fact could have a dramatic social and economic impact. In this scenario, an early and accurate diagnosis of AD could help to decrease its effects on patients, relatives and society. Over the last decades there have been useful advances not only in classic assessment techniques, but also in novel non-invasive screening methodologies. METHODS: Among these methods, automatic analysis of speech -one of the first damaged skills in AD patients- is a natural and useful low cost tool for diagnosis. RESULTS: In this paper a non-linear multi-task approach based on automatic speech analysis is presented. Three tasks with different language complexity levels are analyzed, and promising results that encourage a deeper assessment are obtained. Automatic classification was carried out by using classic Multilayer Perceptron (MLP) and Deep Learning by means of Convolutional Neural Networks (CNN) (biologically- inspired variants of MLPs) over the tasks with classic linear features, perceptual features, Castiglioni fractal dimension and Multiscale Permutation Entropy. CONCLUSION: Finally, the most relevant features are selected by means of the non-parametric Mann- Whitney U-test.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a Alzheimerova nemoc $x diagnóza $7 D000544
- 650 _2
- $a kognitivní dysfunkce $x diagnóza $7 D060825
- 650 _2
- $a kohortové studie $7 D015331
- 650 _2
- $a deep learning $7 D000077321
- 650 12
- $a diagnóza počítačová $x metody $7 D003936
- 650 _2
- $a časná diagnóza $7 D042241
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a neuropsychologické testy $7 D009483
- 650 _2
- $a nelineární dynamika $7 D017711
- 650 12
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 12
- $a řeč $7 D013060
- 650 _2
- $a měření tvorby řeči $7 D013068
- 650 _2
- $a software pro rozpoznávání řeči $7 D049250
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Martinez-de-Lizarduy, Unai $u Department of Electronic Technology, Faculty of Engineering-Gipuzkoa, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia. Spain.
- 700 1_
- $a Calvo, Pilar M $u Department of Systems Engineering and Automation, Faculty of Engineering-Gipuzkoa, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia. Spain.
- 700 1_
- $a Mekyska, Jiri $u Department of Telecommunications, Brno University of Technology, Brno. Czech Republic.
- 700 1_
- $a Beitia, Blanca $u Department of Applied Mathematics, Faculty of Engineering-Vitoria, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea(UPV/EHU), Donostia. Spain.
- 700 1_
- $a Barroso, Nora $u Department of Systems Engineering and Automation, Faculty of Engineering-Gipuzkoa, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Donostia. Spain.
- 700 1_
- $a Estanga, Ainara $u Department of Neurology, CITA-Alzheimer Foundation, Donostia. Spain.
- 700 1_
- $a Tainta, Milkel $u Department of Neurology, CITA-Alzheimer Foundation, Donostia. Spain.
- 700 1_
- $a Ecay-Torres, Mirian $u Department of Neurology, CITA-Alzheimer Foundation, Donostia. Spain.
- 773 0_
- $w MED00008816 $t Current Alzheimer research $x 1875-5828 $g Roč. 15, č. 2 (2018), s. 139-148
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29165084 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190405 $b ABA008
- 991 __
- $a 20190411100837 $b ABA008
- 999 __
- $a ok $b bmc $g 1392316 $s 1051311
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 15 $c 2 $d 139-148 $i 1875-5828 $m Current Alzheimer research $n Curr Alzheimer Res $x MED00008816
- LZP __
- $a Pubmed-20190405