Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The Effect of the Thermosensitive Biodegradable PLGA⁻PEG⁻PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement

L. Vojtova, L. Michlovska, K. Valova, M. Zboncak, M. Trunec, K. Castkova, M. Krticka, V. Pavlinakova, P. Polacek, M. Dzurov, V. Lukasova, M. Rampichova, T. Suchy, R. Sedlacek, MP. Ginebra, EB. Montufar,

. 2019 ; 20 (2) : . [pub] 20190117

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc19027893

Grantová podpora
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
NV18-05-00379 Ministerstvo Zdravotnictví Ceské Republiky
AOTEU-R-2016-064 AOTRAUMA Switzerland
665860 Horizon 2020 Framework Programme

The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA⁻PEG⁻PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA⁻PEG⁻PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA⁻PEG⁻PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19027893
003      
CZ-PrNML
005      
20190815114637.0
007      
ta
008      
190813s2019 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/ijms20020391 $2 doi
035    __
$a (PubMed)30658476
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Vojtova, Lucy $u CEITEC ⁻ Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic. lucy.vojtova@ceitec.vutbr.cz.
245    14
$a The Effect of the Thermosensitive Biodegradable PLGA⁻PEG⁻PLGA Copolymer on the Rheological, Structural and Mechanical Properties of Thixotropic Self-Hardening Tricalcium Phosphate Cement / $c L. Vojtova, L. Michlovska, K. Valova, M. Zboncak, M. Trunec, K. Castkova, M. Krticka, V. Pavlinakova, P. Polacek, M. Dzurov, V. Lukasova, M. Rampichova, T. Suchy, R. Sedlacek, MP. Ginebra, EB. Montufar,
520    9_
$a The current limitations of calcium phosphate cements (CPCs) used in the field of bone regeneration consist of their brittleness, low injectability, disintegration in body fluids and low biodegradability. Moreover, no method is currently available to measure the setting time of CPCs in correlation with the evolution of the setting reaction. The study proposes that it is possible to improve and tune the properties of CPCs via the addition of a thermosensitive, biodegradable, thixotropic copolymer based on poly(lactic acid), poly(glycolic acid) and poly(ethylene glycol) (PLGA⁻PEG⁻PLGA) which undergoes gelation under physiological conditions. The setting times of alpha-tricalcium phosphate (α-TCP) mixed with aqueous solutions of PLGA⁻PEG⁻PLGA determined by means of time-sweep curves revealed a lag phase during the dissolution of the α-TCP particles. The magnitude of the storage modulus at lag phase depends on the liquid to powder ratio, the copolymer concentration and temperature. A sharp increase in the storage modulus was observed at the time of the precipitation of calcium deficient hydroxyapatite (CDHA) crystals, representing the loss of paste workability. The PLGA⁻PEG⁻PLGA copolymer demonstrates the desired pseudoplastic rheological behaviour with a small decrease in shear stress and the rapid recovery of the viscous state once the shear is removed, thus preventing CPC phase separation and providing good cohesion. Preliminary cytocompatibility tests performed on human mesenchymal stem cells proved the suitability of the novel copolymer/α-TCP for the purposes of mini-invasive surgery.
650    _2
$a biokompatibilní materiály $x chemie $7 D001672
650    _2
$a kostní cementy $x chemie $7 D001843
650    _2
$a fosforečnany vápenaté $x chemie $7 D002130
650    _2
$a viabilita buněk $7 D002470
650    _2
$a kultivované buňky $7 D002478
650    _2
$a lidé $7 D006801
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    _2
$a testování materiálů $7 D008422
650    _2
$a mechanické jevy $7 D055595
650    _2
$a molekulární struktura $7 D015394
650    _2
$a polyestery $x chemie $7 D011091
650    _2
$a polyethylenglykoly $x chemická syntéza $x chemie $7 D011092
650    _2
$a polyglactin 910 $x chemická syntéza $x chemie $7 D011098
650    _2
$a polymerizace $7 D058105
650    _2
$a reologie $7 D012212
655    _2
$a časopisecké články $7 D016428
700    1_
$a Michlovska, Lenka $u CEITEC ⁻ Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic. lenka.michlovska@ceitec.vutbr.cz.
700    1_
$a Valova, Kristyna $u CEITEC ⁻ Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic. kristyna.valova@ceitec.vutbr.cz.
700    1_
$a Zboncak, Marek $u CEITEC ⁻ Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic. marek.zboncak@ceitec.vutbr.cz.
700    1_
$a Trunec, Martin $u CEITEC ⁻ Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic. martin.trunec@ceitec.vutbr.cz.
700    1_
$a Castkova, Klara $u CEITEC ⁻ Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic. klara.castkova@ceitec.vutbr.cz.
700    1_
$a Krticka, Milan $u Trauma Surgery Department, The University Hospital Brno, Jihlavska 340/20, 325 00 Brno, Czech Republic. mil.krticka@gmail.com.
700    1_
$a Pavlinakova, Veronika $u CEITEC ⁻ Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic. veronika.svachova@ceitec.vutbr.cz.
700    1_
$a Polacek, Petr $u CEITEC ⁻ Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic. petr.polacek@ceitec.vutbr.cz.
700    1_
$a Dzurov, Matej $u CEITEC ⁻ Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic. xcdrzurov@fch.vut.cz.
700    1_
$a Lukasova, Vera $u Lab of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14240 Prague, Czech Republic. vera.lukasova@iem.cas.cz.
700    1_
$a Rampichova, Michala $u Lab of Tissue Engineering, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14240 Prague, Czech Republic. michala.rampichova@iem.cas.cz.
700    1_
$a Suchy, Tomas $u Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, V Holesovickach 41, 182 09 Prague, Czech Republic. suchy@irsm.cas.cz. Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07 Prague, Czech Republic. suchy@irsm.cas.cz.
700    1_
$a Sedlacek, Radek $u Department of Mechanics, Biomechanics and Mechatronics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07 Prague, Czech Republic. radek.sedlacek@fs.cvut.cz.
700    1_
$a Ginebra, Maria-Pau $u Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgical Engineering, Universitat Politècnica de Catalunya, 08019 Barcelona, Spain. maria.pau.ginebra@upc.edu.
700    1_
$a Montufar, Edgar B $u CEITEC ⁻ Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic. eb.montufar@ceitec.vutbr.cz.
773    0_
$w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 20, č. 2 (2019)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30658476 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190815114905 $b ABA008
999    __
$a ok $b bmc $g 1433042 $s 1066353
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 20 $c 2 $e 20190117 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
GRA    __
$a LQ1601 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a NV18-05-00379 $p Ministerstvo Zdravotnictví Ceské Republiky
GRA    __
$a AOTEU-R-2016-064 $p AOTRAUMA Switzerland
GRA    __
$a 665860 $p Horizon 2020 Framework Programme
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...