-
Something wrong with this record ?
Bioavailability of mercury in contaminated soils assessed by the diffusive gradient in thin film technique in relation to uptake by Miscanthus × giganteus
A. Ridošková, A. Pelfrêne, F. Douay, P. Pelcová, V. Smolíková, V. Adam,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30620786
DOI
10.1002/etc.4318
Knihovny.cz E-resources
- MeSH
- Biological Availability MeSH
- Models, Biological MeSH
- Biological Transport MeSH
- Ion Exchange Resins chemistry MeSH
- Soil Pollutants analysis metabolism MeSH
- Poaceae metabolism MeSH
- Environmental Monitoring methods MeSH
- Soil chemistry MeSH
- Mercury analysis metabolism MeSH
- Chromatography, High Pressure Liquid MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
We assessed the relationship between the diffusive gradient in thin film (DGT) technique using the new ion-exchange resin Ambersep GT74 and the uptake of mercury (Hg) by a model plant cultivated on metal-contaminated agricultural soils under greenhouse conditions. Based on the total Hg content, 0.37 to 1.17% of the Hg passed to the soil porewater from the solid phase, and 2.18 to 9.18% of the Hg is DGT-available. These results were confirmed by calculating the R value (the ratio of the concentrations of bioavailable Hg measured by DGT and soil solution), which illustrated the strong bonding of Hg to the solid phase of soil and its extremely low mobility. Only inorganic Hg2+ species were found in the metal-contaminated agricultural soils, as determined by a high-performance liquid chromatography-cold vapor atomic fluorescence spectrometry speciation analysis. The Hg was distributed in Miscanthus × giganteus organs in the following order for all sampling sites: roots (55-82%) > leaves (8-27%) > stems (7-16%) > rhizomes (4-7%). Environ Toxicol Chem 2019;38:321-328. © 2018 SETAC.
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
Laboratoire de Génie Civil et géoEnvironnement ISA Lille Yncréa Hauts de France Lille France
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19027931
- 003
- CZ-PrNML
- 005
- 20190819085840.0
- 007
- ta
- 008
- 190813s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/etc.4318 $2 doi
- 035 __
- $a (PubMed)30620786
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Ridošková, Andrea $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic. Central European Institute of Technology, University of Technology, Brno, Czech Republic.
- 245 10
- $a Bioavailability of mercury in contaminated soils assessed by the diffusive gradient in thin film technique in relation to uptake by Miscanthus × giganteus / $c A. Ridošková, A. Pelfrêne, F. Douay, P. Pelcová, V. Smolíková, V. Adam,
- 520 9_
- $a We assessed the relationship between the diffusive gradient in thin film (DGT) technique using the new ion-exchange resin Ambersep GT74 and the uptake of mercury (Hg) by a model plant cultivated on metal-contaminated agricultural soils under greenhouse conditions. Based on the total Hg content, 0.37 to 1.17% of the Hg passed to the soil porewater from the solid phase, and 2.18 to 9.18% of the Hg is DGT-available. These results were confirmed by calculating the R value (the ratio of the concentrations of bioavailable Hg measured by DGT and soil solution), which illustrated the strong bonding of Hg to the solid phase of soil and its extremely low mobility. Only inorganic Hg2+ species were found in the metal-contaminated agricultural soils, as determined by a high-performance liquid chromatography-cold vapor atomic fluorescence spectrometry speciation analysis. The Hg was distributed in Miscanthus × giganteus organs in the following order for all sampling sites: roots (55-82%) > leaves (8-27%) > stems (7-16%) > rhizomes (4-7%). Environ Toxicol Chem 2019;38:321-328. © 2018 SETAC.
- 650 _2
- $a biologická dostupnost $7 D001682
- 650 _2
- $a biologický transport $7 D001692
- 650 _2
- $a vysokoúčinná kapalinová chromatografie $7 D002851
- 650 _2
- $a monitorování životního prostředí $x metody $7 D004784
- 650 _2
- $a iontoměniče $x chemie $7 D007475
- 650 _2
- $a rtuť $x analýza $x metabolismus $7 D008628
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a lipnicovité $x metabolismus $7 D006109
- 650 _2
- $a půda $x chemie $7 D012987
- 650 _2
- $a látky znečišťující půdu $x analýza $x metabolismus $7 D012989
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pelfrêne, Aurélie $u Laboratoire de Génie Civil et géoEnvironnement-ISA Lille, Yncréa Hauts-de-France, Lille, France.
- 700 1_
- $a Douay, Francis $u Laboratoire de Génie Civil et géoEnvironnement-ISA Lille, Yncréa Hauts-de-France, Lille, France.
- 700 1_
- $a Pelcová, Pavlína $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic.
- 700 1_
- $a Smolíková, Vendula $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic. Central European Institute of Technology, University of Technology, Brno, Czech Republic.
- 700 1_
- $a Adam, Vojtěch $u Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic. Central European Institute of Technology, University of Technology, Brno, Czech Republic.
- 773 0_
- $w MED00001560 $t Environmental toxicology and chemistry $x 1552-8618 $g Roč. 38, č. 2 (2019), s. 321-328
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30620786 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190819090114 $b ABA008
- 999 __
- $a ok $b bmc $g 1433080 $s 1066391
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 38 $c 2 $d 321-328 $e 20190108 $i 1552-8618 $m Environmental toxicology and chemistry $n Environ Toxicol Chem $x MED00001560
- LZP __
- $a Pubmed-20190813