• Je něco špatně v tomto záznamu ?

Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG

F. Plesinger, P. Nejedly, I. Viscor, J. Halamek, P. Jurak,

. 2018 ; 39 (9) : 094002. [pub] 20180913

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19028273

The automated detection of arrhythmia in a Holter ECG signal is a challenging task due to its complex clinical content and data quantity. It is also challenging due to the fact that Holter ECG is usually affected by noise. Such noise may be the result of the regular activity of patients using the Holter ECG-partially unplugged electrodes, short-time disconnections due to movement, or disturbances caused by electric devices or infrastructure. Furthermore, regular patient activities such as movement also affect the ECG signals and, in connection with artificial noise, may render the ECG non-readable or may lead to misinterpretation of the ECG. OBJECTIVE: In accordance with the PhysioNet/CinC Challenge 2017, we propose a method for automated classification of 1-lead Holter ECG recordings. APPROACH: The proposed method classifies a tested record into one of four classes-'normal', 'atrial fibrillation', 'other arrhythmia' or 'too noisy to classify'. It uses two machine learning methods in parallel. The first-a bagged tree ensemble (BTE)-processes a set of 43 features based on QRS detection and PQRS morphology. The second-a convolutional neural network connected to a shallow neural network (CNN/NN)-uses ECG filtered by nine different filters (8×  envelograms, 1×  band-pass). If the output of CNN/NN reaches a specific level of certainty, its output is used. Otherwise, the BTE output is preferred. MAIN RESULTS: The proposed method was trained using a reduced version of the public PhysioNet/CinC Challenge 2017 dataset (8183 records) and remotely tested on the hidden dataset on PhysioNet servers (3658 records). The method achieved F1 test scores of 0.92, 0.82 and 0.74 for normal recordings, atrial fibrillation and recordings containing other arrhythmias, respectively. The overall F1 score measured on the hidden test-set was 0.83. SIGNIFICANCE: This F1 score led to shared rank #2 in the follow-up PhysioNet/CinC Challenge 2017 ranking.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028273
003      
CZ-PrNML
005      
20190822091922.0
007      
ta
008      
190813s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1361-6579/aad9ee $2 doi
035    __
$a (PubMed)30102251
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Plesinger, Filip $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia.
245    10
$a Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG / $c F. Plesinger, P. Nejedly, I. Viscor, J. Halamek, P. Jurak,
520    9_
$a The automated detection of arrhythmia in a Holter ECG signal is a challenging task due to its complex clinical content and data quantity. It is also challenging due to the fact that Holter ECG is usually affected by noise. Such noise may be the result of the regular activity of patients using the Holter ECG-partially unplugged electrodes, short-time disconnections due to movement, or disturbances caused by electric devices or infrastructure. Furthermore, regular patient activities such as movement also affect the ECG signals and, in connection with artificial noise, may render the ECG non-readable or may lead to misinterpretation of the ECG. OBJECTIVE: In accordance with the PhysioNet/CinC Challenge 2017, we propose a method for automated classification of 1-lead Holter ECG recordings. APPROACH: The proposed method classifies a tested record into one of four classes-'normal', 'atrial fibrillation', 'other arrhythmia' or 'too noisy to classify'. It uses two machine learning methods in parallel. The first-a bagged tree ensemble (BTE)-processes a set of 43 features based on QRS detection and PQRS morphology. The second-a convolutional neural network connected to a shallow neural network (CNN/NN)-uses ECG filtered by nine different filters (8×  envelograms, 1×  band-pass). If the output of CNN/NN reaches a specific level of certainty, its output is used. Otherwise, the BTE output is preferred. MAIN RESULTS: The proposed method was trained using a reduced version of the public PhysioNet/CinC Challenge 2017 dataset (8183 records) and remotely tested on the hidden dataset on PhysioNet servers (3658 records). The method achieved F1 test scores of 0.92, 0.82 and 0.74 for normal recordings, atrial fibrillation and recordings containing other arrhythmias, respectively. The overall F1 score measured on the hidden test-set was 0.83. SIGNIFICANCE: This F1 score led to shared rank #2 in the follow-up PhysioNet/CinC Challenge 2017 ranking.
650    _2
$a fibrilace síní $x diagnóza $7 D001281
650    _2
$a diagnóza počítačová $x metody $7 D003936
650    _2
$a elektrokardiografie $x metody $7 D004562
650    _2
$a lidé $7 D006801
650    12
$a strojové učení $7 D000069550
650    _2
$a rozpoznávání automatizované $x metody $7 D010363
650    12
$a počítačové zpracování signálu $7 D012815
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Nejedly, Petr
700    1_
$a Viscor, Ivo
700    1_
$a Halamek, Josef
700    1_
$a Jurak, Pavel
773    0_
$w MED00181057 $t Physiological measurement $x 1361-6579 $g Roč. 39, č. 9 (2018), s. 094002
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30102251 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190822092200 $b ABA008
999    __
$a ok $b bmc $g 1433422 $s 1066733
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 39 $c 9 $d 094002 $e 20180913 $i 1361-6579 $m Physiological measurement $n Physiol Meas $x MED00181057
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...