-
Je něco špatně v tomto záznamu ?
Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG
F. Plesinger, P. Nejedly, I. Viscor, J. Halamek, P. Jurak,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30102251
DOI
10.1088/1361-6579/aad9ee
Knihovny.cz E-zdroje
- MeSH
- diagnóza počítačová metody MeSH
- elektrokardiografie metody MeSH
- fibrilace síní diagnóza MeSH
- lidé MeSH
- počítačové zpracování signálu * MeSH
- rozpoznávání automatizované metody MeSH
- strojové učení * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The automated detection of arrhythmia in a Holter ECG signal is a challenging task due to its complex clinical content and data quantity. It is also challenging due to the fact that Holter ECG is usually affected by noise. Such noise may be the result of the regular activity of patients using the Holter ECG-partially unplugged electrodes, short-time disconnections due to movement, or disturbances caused by electric devices or infrastructure. Furthermore, regular patient activities such as movement also affect the ECG signals and, in connection with artificial noise, may render the ECG non-readable or may lead to misinterpretation of the ECG. OBJECTIVE: In accordance with the PhysioNet/CinC Challenge 2017, we propose a method for automated classification of 1-lead Holter ECG recordings. APPROACH: The proposed method classifies a tested record into one of four classes-'normal', 'atrial fibrillation', 'other arrhythmia' or 'too noisy to classify'. It uses two machine learning methods in parallel. The first-a bagged tree ensemble (BTE)-processes a set of 43 features based on QRS detection and PQRS morphology. The second-a convolutional neural network connected to a shallow neural network (CNN/NN)-uses ECG filtered by nine different filters (8× envelograms, 1× band-pass). If the output of CNN/NN reaches a specific level of certainty, its output is used. Otherwise, the BTE output is preferred. MAIN RESULTS: The proposed method was trained using a reduced version of the public PhysioNet/CinC Challenge 2017 dataset (8183 records) and remotely tested on the hidden dataset on PhysioNet servers (3658 records). The method achieved F1 test scores of 0.92, 0.82 and 0.74 for normal recordings, atrial fibrillation and recordings containing other arrhythmias, respectively. The overall F1 score measured on the hidden test-set was 0.83. SIGNIFICANCE: This F1 score led to shared rank #2 in the follow-up PhysioNet/CinC Challenge 2017 ranking.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19028273
- 003
- CZ-PrNML
- 005
- 20190822091922.0
- 007
- ta
- 008
- 190813s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1088/1361-6579/aad9ee $2 doi
- 035 __
- $a (PubMed)30102251
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Plesinger, Filip $u Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia.
- 245 10
- $a Parallel use of a convolutional neural network and bagged tree ensemble for the classification of Holter ECG / $c F. Plesinger, P. Nejedly, I. Viscor, J. Halamek, P. Jurak,
- 520 9_
- $a The automated detection of arrhythmia in a Holter ECG signal is a challenging task due to its complex clinical content and data quantity. It is also challenging due to the fact that Holter ECG is usually affected by noise. Such noise may be the result of the regular activity of patients using the Holter ECG-partially unplugged electrodes, short-time disconnections due to movement, or disturbances caused by electric devices or infrastructure. Furthermore, regular patient activities such as movement also affect the ECG signals and, in connection with artificial noise, may render the ECG non-readable or may lead to misinterpretation of the ECG. OBJECTIVE: In accordance with the PhysioNet/CinC Challenge 2017, we propose a method for automated classification of 1-lead Holter ECG recordings. APPROACH: The proposed method classifies a tested record into one of four classes-'normal', 'atrial fibrillation', 'other arrhythmia' or 'too noisy to classify'. It uses two machine learning methods in parallel. The first-a bagged tree ensemble (BTE)-processes a set of 43 features based on QRS detection and PQRS morphology. The second-a convolutional neural network connected to a shallow neural network (CNN/NN)-uses ECG filtered by nine different filters (8× envelograms, 1× band-pass). If the output of CNN/NN reaches a specific level of certainty, its output is used. Otherwise, the BTE output is preferred. MAIN RESULTS: The proposed method was trained using a reduced version of the public PhysioNet/CinC Challenge 2017 dataset (8183 records) and remotely tested on the hidden dataset on PhysioNet servers (3658 records). The method achieved F1 test scores of 0.92, 0.82 and 0.74 for normal recordings, atrial fibrillation and recordings containing other arrhythmias, respectively. The overall F1 score measured on the hidden test-set was 0.83. SIGNIFICANCE: This F1 score led to shared rank #2 in the follow-up PhysioNet/CinC Challenge 2017 ranking.
- 650 _2
- $a fibrilace síní $x diagnóza $7 D001281
- 650 _2
- $a diagnóza počítačová $x metody $7 D003936
- 650 _2
- $a elektrokardiografie $x metody $7 D004562
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a strojové učení $7 D000069550
- 650 _2
- $a rozpoznávání automatizované $x metody $7 D010363
- 650 12
- $a počítačové zpracování signálu $7 D012815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Nejedly, Petr
- 700 1_
- $a Viscor, Ivo
- 700 1_
- $a Halamek, Josef
- 700 1_
- $a Jurak, Pavel
- 773 0_
- $w MED00181057 $t Physiological measurement $x 1361-6579 $g Roč. 39, č. 9 (2018), s. 094002
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30102251 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190822092200 $b ABA008
- 999 __
- $a ok $b bmc $g 1433422 $s 1066733
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 39 $c 9 $d 094002 $e 20180913 $i 1361-6579 $m Physiological measurement $n Physiol Meas $x MED00181057
- LZP __
- $a Pubmed-20190813