• Je něco špatně v tomto záznamu ?

High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures

EB. Montufar, M. Casas-Luna, M. Horynová, S. Tkachenko, Z. Fohlerová, S. Diaz-de-la-Torre, K. Dvořák, L. Čelko, J. Kaiser,

. 2018 ; 70 (-) : 293-303. [pub] 20180209

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19028579

In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. STATEMENT OF SIGNIFICANCE: Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in young patients. In this work, α-TCP/Fe composites are studied for the first time in a wide range of compositions, showing not only higher degradation rate in vitro than pure components, but also good cytocompatibility and mechanical properties controllable with the Fe content. Ceramic matrix composites show high specific strength and low elastic modulus, thus better fulfilling the requirements for bone fractures fixation. A significant advance over previous works on the topic is the use of pulsed electric current assisted sintering together with α-TCP, convenient to improve the mechanical performance and degradation rate, respectively.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19028579
003      
CZ-PrNML
005      
20190816092725.0
007      
ta
008      
190813s2018 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.actbio.2018.02.002 $2 doi
035    __
$a (PubMed)29432984
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Montufar, E B $u CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic. Electronic address: eb.montufar@ceitec.vutbr.cz.
245    10
$a High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures / $c EB. Montufar, M. Casas-Luna, M. Horynová, S. Tkachenko, Z. Fohlerová, S. Diaz-de-la-Torre, K. Dvořák, L. Čelko, J. Kaiser,
520    9_
$a In this work alpha tricalcium phosphate (α-TCP)/iron (Fe) composites were developed as a new family of biodegradable, load-bearing and cytocompatible materials. The composites with composition from pure ceramic to pure metallic samples were consolidated by pulsed electric current assisted sintering to minimise processing time and temperature while improving their mechanical performance. The mechanical strength of the composites was increased and controlled with the Fe content, passing from brittle to ductile failure. In particular, the addition of 25 vol% of Fe produced a ceramic matrix composite with elastic modulus much closer to cortical bone than that of titanium or biodegradable magnesium alloys and specific compressive strength above that of stainless steel, chromium-cobalt alloys and pure titanium, currently used in clinic for internal fracture fixation. All the composites studied exhibited higher degradation rate than their individual components, presenting values around 200 μm/year, but also their compressive strength did not show a significant reduction in the period required for bone fracture consolidation. Composites showed preferential degradation of α-TCP areas rather than β-TCP areas, suggesting that α-TCP can produce composites with higher degradation rate. The composites were cytocompatible both in indirect and direct contact with bone cells. Osteoblast-like cells attached and spread on the surface of the composites, presenting proliferation rate similar to cells on tissue culture-grade polystyrene and they showed alkaline phosphatase activity. Therefore, this new family of composites is a potential alternative to produce implants for temporal reduction of bone fractures. STATEMENT OF SIGNIFICANCE: Biodegradable alpha-tricalcium phosphate/iron (α-TCP/Fe) composites are promising candidates for the fabrication of temporal osteosynthesis devices. Similar to biodegradable metals, these composites can avoid implant removal after bone fracture healing, particularly in young patients. In this work, α-TCP/Fe composites are studied for the first time in a wide range of compositions, showing not only higher degradation rate in vitro than pure components, but also good cytocompatibility and mechanical properties controllable with the Fe content. Ceramic matrix composites show high specific strength and low elastic modulus, thus better fulfilling the requirements for bone fractures fixation. A significant advance over previous works on the topic is the use of pulsed electric current assisted sintering together with α-TCP, convenient to improve the mechanical performance and degradation rate, respectively.
650    _2
$a kostní náhrady $x farmakologie $7 D018786
650    _2
$a fosforečnany vápenaté $x farmakologie $7 D002130
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a keramika $x farmakologie $7 D002516
650    _2
$a modul pružnosti $7 D055119
650    _2
$a fraktury kostí $x farmakoterapie $x metabolismus $x patologie $7 D050723
650    _2
$a lidé $7 D006801
650    _2
$a železo $x farmakologie $7 D007501
650    _2
$a testování materiálů $7 D008422
650    _2
$a osteoblasty $x metabolismus $x patologie $7 D010006
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Casas-Luna, M $u CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Horynová, M $u CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Tkachenko, S $u CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Fohlerová, Z $u CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Diaz-de-la-Torre, S $u CIITEC - Centro de Investigación e Innovación Tecnológica, Instituto Politécnico Nacional, México City, Mexico.
700    1_
$a Dvořák, K $u Faculty of Civil Engineering, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Čelko, L $u CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
700    1_
$a Kaiser, J $u CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic.
773    0_
$w MED00008542 $t Acta biomaterialia $x 1878-7568 $g Roč. 70, č. - (2018), s. 293-303
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29432984 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190816092954 $b ABA008
999    __
$a ok $b bmc $g 1433728 $s 1067039
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 70 $c - $d 293-303 $e 20180209 $i 1878-7568 $m Acta biomaterialia $n Acta Biomater $x MED00008542
LZP    __
$a Pubmed-20190813

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...