-
Je něco špatně v tomto záznamu ?
Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae
K. Piwosz, D. Kaftan, J. Dean, J. Šetlík, M. Koblížek,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29159858
DOI
10.1111/1462-2920.14003
Knihovny.cz E-zdroje
- MeSH
- bakteriochlorofyl A metabolismus MeSH
- biomasa MeSH
- energetický metabolismus fyziologie MeSH
- fotosyntéza fyziologie MeSH
- organické látky metabolismus MeSH
- Roseobacter metabolismus MeSH
- světlo MeSH
- transport elektronů fyziologie MeSH
- vodní organismy metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Aerobic anoxygenic photosynthetic bacteria are an important component of marine microbial communities. They produce energy in light using bacteriochlorophyll a containing photosystems. This extra energy provides an advantage over purely heterotrophic bacteria. One of the most intensively studied AAP bacteria is Dinoroseobacter shibae, a member of the environmentally important Roseobacter clade. Light stimulates its growth and metabolism, but the effect of light intensity remains unclear. Here, we show that an increase in biomass along an irradiance gradient followed the exponential rise to the maximum curve, with saturation at about 300 µmol photons m-2 s-1 , without any inhibition at light intensities up to 600 µmol photons m-2 s-1 . The cells adapted to higher irradiance by reducing pigmentation and increasing the electron transfer rate. This additional energy allowed D. shibae to redirect the metabolism of organic carbon sources such as glucose, leucine, glutamate, acetate and pyruvate toward anabolism, resulting in a twofold increase of their assimilation rates. We provide equations that can be feasibly incorporated into the existing model of D. shibae metabolism to further advance our understanding of the role of photoheterotrophy in the ocean.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19028691
- 003
- CZ-PrNML
- 005
- 20190820100117.0
- 007
- ta
- 008
- 190813s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/1462-2920.14003 $2 doi
- 035 __
- $a (PubMed)29159858
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Piwosz, Kasia $u Center Algatech, Institute of Microbiology CAS, Třeboň, 37981, Czech Republic.
- 245 10
- $a Nonlinear effect of irradiance on photoheterotrophic activity and growth of the aerobic anoxygenic phototrophic bacterium Dinoroseobacter shibae / $c K. Piwosz, D. Kaftan, J. Dean, J. Šetlík, M. Koblížek,
- 520 9_
- $a Aerobic anoxygenic photosynthetic bacteria are an important component of marine microbial communities. They produce energy in light using bacteriochlorophyll a containing photosystems. This extra energy provides an advantage over purely heterotrophic bacteria. One of the most intensively studied AAP bacteria is Dinoroseobacter shibae, a member of the environmentally important Roseobacter clade. Light stimulates its growth and metabolism, but the effect of light intensity remains unclear. Here, we show that an increase in biomass along an irradiance gradient followed the exponential rise to the maximum curve, with saturation at about 300 µmol photons m-2 s-1 , without any inhibition at light intensities up to 600 µmol photons m-2 s-1 . The cells adapted to higher irradiance by reducing pigmentation and increasing the electron transfer rate. This additional energy allowed D. shibae to redirect the metabolism of organic carbon sources such as glucose, leucine, glutamate, acetate and pyruvate toward anabolism, resulting in a twofold increase of their assimilation rates. We provide equations that can be feasibly incorporated into the existing model of D. shibae metabolism to further advance our understanding of the role of photoheterotrophy in the ocean.
- 650 _2
- $a vodní organismy $x metabolismus $7 D059001
- 650 _2
- $a bakteriochlorofyl A $x metabolismus $7 D025541
- 650 _2
- $a biomasa $7 D018533
- 650 _2
- $a transport elektronů $x fyziologie $7 D004579
- 650 _2
- $a energetický metabolismus $x fyziologie $7 D004734
- 650 _2
- $a světlo $7 D008027
- 650 _2
- $a organické látky $x metabolismus $7 D009930
- 650 _2
- $a fotosyntéza $x fyziologie $7 D010788
- 650 _2
- $a Roseobacter $x metabolismus $7 D041904
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kaftan, David $u Center Algatech, Institute of Microbiology CAS, Třeboň, 37981, Czech Republic.
- 700 1_
- $a Dean, Jason $u Center Algatech, Institute of Microbiology CAS, Třeboň, 37981, Czech Republic.
- 700 1_
- $a Šetlík, Jiří $u Center Algatech, Institute of Microbiology CAS, Třeboň, 37981, Czech Republic.
- 700 1_
- $a Koblížek, Michal $u Center Algatech, Institute of Microbiology CAS, Třeboň, 37981, Czech Republic.
- 773 0_
- $w MED00007220 $t Environmental microbiology $x 1462-2920 $g Roč. 20, č. 2 (2018), s. 724-733
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29159858 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20190813 $b ABA008
- 991 __
- $a 20190820100353 $b ABA008
- 999 __
- $a ok $b bmc $g 1433840 $s 1067151
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 20 $c 2 $d 724-733 $e 20171207 $i 1462-2920 $m Environmental microbiology $n Environ Microbiol $x MED00007220
- LZP __
- $a Pubmed-20190813