• Je něco špatně v tomto záznamu ?

Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data

J. Chmelik, R. Jakubicek, P. Walek, J. Jan, P. Ourednicek, L. Lambert, E. Amadori, G. Gavelli,

. 2018 ; 49 (-) : 76-88. [pub] 20180803

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035066

This paper aims to address the segmentation and classification of lytic and sclerotic metastatic lesions that are difficult to define by using spinal 3D Computed Tomography (CT) images obtained from highly pathologically affected cases. As the lesions are ill-defined and consequently it is difficult to find relevant image features that would enable detection and classification of lesions by classical methods of texture and shape analysis, the problem is solved by automatic feature extraction provided by a deep Convolutional Neural Network (CNN). Our main contributions are: (i) individual CNN architecture, and pre-processing steps that are dependent on a patient data and a scan protocol - it enables work with different types of CT scans; (ii) medial axis transform (MAT) post-processing for shape simplification of segmented lesion candidates with Random Forest (RF) based meta-analysis; and (iii) usability of the proposed method on whole-spine CTs (cervical, thoracic, lumbar), which is not treated in other published methods (they work with thoracolumbar segments of spine only). Our proposed method has been tested on our own dataset annotated by two mutually independent radiologists and has been compared to other published methods. This work is part of the ongoing complex project dealing with spine analysis and spine lesion longitudinal studies.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035066
003      
CZ-PrNML
005      
20191015093730.0
007      
ta
008      
191007s2018 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.media.2018.07.008 $2 doi
035    __
$a (PubMed)30114549
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Chmelik, Jiri $u Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Technicka 3082/12, 616 00, Czechia. Electronic address: chmelikj@feec.vutbr.cz.
245    10
$a Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data / $c J. Chmelik, R. Jakubicek, P. Walek, J. Jan, P. Ourednicek, L. Lambert, E. Amadori, G. Gavelli,
520    9_
$a This paper aims to address the segmentation and classification of lytic and sclerotic metastatic lesions that are difficult to define by using spinal 3D Computed Tomography (CT) images obtained from highly pathologically affected cases. As the lesions are ill-defined and consequently it is difficult to find relevant image features that would enable detection and classification of lesions by classical methods of texture and shape analysis, the problem is solved by automatic feature extraction provided by a deep Convolutional Neural Network (CNN). Our main contributions are: (i) individual CNN architecture, and pre-processing steps that are dependent on a patient data and a scan protocol - it enables work with different types of CT scans; (ii) medial axis transform (MAT) post-processing for shape simplification of segmented lesion candidates with Random Forest (RF) based meta-analysis; and (iii) usability of the proposed method on whole-spine CTs (cervical, thoracic, lumbar), which is not treated in other published methods (they work with thoracolumbar segments of spine only). Our proposed method has been tested on our own dataset annotated by two mutually independent radiologists and has been compared to other published methods. This work is part of the ongoing complex project dealing with spine analysis and spine lesion longitudinal studies.
650    _2
$a senioři $7 D000368
650    _2
$a senioři nad 80 let $7 D000369
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    12
$a zobrazování trojrozměrné $7 D021621
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    12
$a neuronové sítě $7 D016571
650    _2
$a rentgenový obraz - interpretace počítačová $x metody $7 D011857
650    _2
$a nádory páteře $x diagnostické zobrazování $x sekundární $7 D013125
650    12
$a počítačová rentgenová tomografie $7 D014057
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Jakubicek, Roman $u Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Technicka 3082/12, 616 00, Czechia.
700    1_
$a Walek, Petr $u Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Technicka 3082/12, 616 00, Czechia.
700    1_
$a Jan, Jiri $u Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Technicka 3082/12, 616 00, Czechia.
700    1_
$a Ourednicek, Petr $u Philips Healthcare, AE Eindhoven, High Tech Campus 34, 5656, Netherlands; Department of Medical Imaging, St. Anne's University Hospital Brno and Faculty of Medicine Masaryk University Brno, Brno, Pekarska 663/53, 656 91 Czechia.
700    1_
$a Lambert, Lukas $u Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, U Nemocnice 499/2, 128 08, Czechia.
700    1_
$a Amadori, Elena $u Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola FC, Via Piero Maroncelli 40, 470 14, Italy.
700    1_
$a Gavelli, Giampaolo $u Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola FC, Via Piero Maroncelli 40, 470 14, Italy.
773    0_
$w MED00007107 $t Medical image analysis $x 1361-8423 $g Roč. 49, č. - (2018), s. 76-88
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30114549 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191015094155 $b ABA008
999    __
$a ok $b bmc $g 1451726 $s 1073616
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 49 $c - $d 76-88 $e 20180803 $i 1361-8423 $m Medical image analysis $n Med Image Anal $x MED00007107
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...