-
Je něco špatně v tomto záznamu ?
Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data
J. Chmelik, R. Jakubicek, P. Walek, J. Jan, P. Ourednicek, L. Lambert, E. Amadori, G. Gavelli,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory páteře diagnostické zobrazování sekundární MeSH
- neuronové sítě * MeSH
- počítačová rentgenová tomografie * MeSH
- rentgenový obraz - interpretace počítačová metody MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
This paper aims to address the segmentation and classification of lytic and sclerotic metastatic lesions that are difficult to define by using spinal 3D Computed Tomography (CT) images obtained from highly pathologically affected cases. As the lesions are ill-defined and consequently it is difficult to find relevant image features that would enable detection and classification of lesions by classical methods of texture and shape analysis, the problem is solved by automatic feature extraction provided by a deep Convolutional Neural Network (CNN). Our main contributions are: (i) individual CNN architecture, and pre-processing steps that are dependent on a patient data and a scan protocol - it enables work with different types of CT scans; (ii) medial axis transform (MAT) post-processing for shape simplification of segmented lesion candidates with Random Forest (RF) based meta-analysis; and (iii) usability of the proposed method on whole-spine CTs (cervical, thoracic, lumbar), which is not treated in other published methods (they work with thoracolumbar segments of spine only). Our proposed method has been tested on our own dataset annotated by two mutually independent radiologists and has been compared to other published methods. This work is part of the ongoing complex project dealing with spine analysis and spine lesion longitudinal studies.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19035066
- 003
- CZ-PrNML
- 005
- 20191015093730.0
- 007
- ta
- 008
- 191007s2018 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.media.2018.07.008 $2 doi
- 035 __
- $a (PubMed)30114549
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Chmelik, Jiri $u Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Technicka 3082/12, 616 00, Czechia. Electronic address: chmelikj@feec.vutbr.cz.
- 245 10
- $a Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data / $c J. Chmelik, R. Jakubicek, P. Walek, J. Jan, P. Ourednicek, L. Lambert, E. Amadori, G. Gavelli,
- 520 9_
- $a This paper aims to address the segmentation and classification of lytic and sclerotic metastatic lesions that are difficult to define by using spinal 3D Computed Tomography (CT) images obtained from highly pathologically affected cases. As the lesions are ill-defined and consequently it is difficult to find relevant image features that would enable detection and classification of lesions by classical methods of texture and shape analysis, the problem is solved by automatic feature extraction provided by a deep Convolutional Neural Network (CNN). Our main contributions are: (i) individual CNN architecture, and pre-processing steps that are dependent on a patient data and a scan protocol - it enables work with different types of CT scans; (ii) medial axis transform (MAT) post-processing for shape simplification of segmented lesion candidates with Random Forest (RF) based meta-analysis; and (iii) usability of the proposed method on whole-spine CTs (cervical, thoracic, lumbar), which is not treated in other published methods (they work with thoracolumbar segments of spine only). Our proposed method has been tested on our own dataset annotated by two mutually independent radiologists and has been compared to other published methods. This work is part of the ongoing complex project dealing with spine analysis and spine lesion longitudinal studies.
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a senioři nad 80 let $7 D000369
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a zobrazování trojrozměrné $7 D021621
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a lidé středního věku $7 D008875
- 650 12
- $a neuronové sítě $7 D016571
- 650 _2
- $a rentgenový obraz - interpretace počítačová $x metody $7 D011857
- 650 _2
- $a nádory páteře $x diagnostické zobrazování $x sekundární $7 D013125
- 650 12
- $a počítačová rentgenová tomografie $7 D014057
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Jakubicek, Roman $u Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Technicka 3082/12, 616 00, Czechia.
- 700 1_
- $a Walek, Petr $u Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Technicka 3082/12, 616 00, Czechia.
- 700 1_
- $a Jan, Jiri $u Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Brno University of Technology, Brno, Technicka 3082/12, 616 00, Czechia.
- 700 1_
- $a Ourednicek, Petr $u Philips Healthcare, AE Eindhoven, High Tech Campus 34, 5656, Netherlands; Department of Medical Imaging, St. Anne's University Hospital Brno and Faculty of Medicine Masaryk University Brno, Brno, Pekarska 663/53, 656 91 Czechia.
- 700 1_
- $a Lambert, Lukas $u Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, U Nemocnice 499/2, 128 08, Czechia.
- 700 1_
- $a Amadori, Elena $u Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola FC, Via Piero Maroncelli 40, 470 14, Italy.
- 700 1_
- $a Gavelli, Giampaolo $u Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Meldola FC, Via Piero Maroncelli 40, 470 14, Italy.
- 773 0_
- $w MED00007107 $t Medical image analysis $x 1361-8423 $g Roč. 49, č. - (2018), s. 76-88
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30114549 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191015094155 $b ABA008
- 999 __
- $a ok $b bmc $g 1451726 $s 1073616
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 49 $c - $d 76-88 $e 20180803 $i 1361-8423 $m Medical image analysis $n Med Image Anal $x MED00007107
- LZP __
- $a Pubmed-20191007