Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

MPO (Myeloperoxidase) Reduces Endothelial Glycocalyx Thickness Dependent on Its Cationic Charge

K. Manchanda, H. Kolarova, C. Kerkenpaß, M. Mollenhauer, J. Vitecek, V. Rudolph, L. Kubala, S. Baldus, M. Adam, A. Klinke,

. 2018 ; 38 (8) : 1859-1867. [pub] -

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc19035187

Objective- The leukocyte heme-enzyme MPO (myeloperoxidase) exerts proinflammatory effects on the vascular system primarily linked to its catalytic properties. Recent studies have shown that MPO, depending on its cationic charge, mediates neutrophil recruitment and activation. Here, we further investigated MPO's extracatalytic properties and its effect on endothelial glycocalyx (EG) integrity. Approach and Results- In vivo staining of murine cremaster muscle vessels with Alcian Blue 8GX provided evidence of an MPO-dependent decrease in anionic charge of the EG. MPO binding to the glycocalyx was further characterized using Chinese hamster ovary cells and its glycosaminoglycan mutants-pgsA-745 (mutant Chinese hamster ovary cells lacking heparan sulfate and chondroitin sulfate glycosaminoglycan) and pgsD-677 (mutant Chinese hamster ovary cells lacking heparan sulfate glycosaminoglycan), which revealed heparan sulfate as the main mediator of MPO binding. Further, EG integrity was assessed in terms of thickness using intravital microscopy of murine cremaster muscle. A significant reduction in EG thickness was observed on infusion of catalytically active MPO, as well as mutant inactive MPO and cationic polymer polylysine. Similar effects were also observed in wild-type mice after a local inflammatory stimulus but not in MPO-knockout mice. The reduction in EG thickness was reversed after removal of vessel-bound MPO, suggesting a possible physical collapse of the EG. Last, experiments with in vivo neutrophil depletion revealed that MPO also induced neutrophil-mediated shedding of the EG core protein, Sdc1 (syndecan-1). Conclusions- These findings provide evidence that MPO, via ionic interaction with heparan sulfate side chains, can cause neutrophil-dependent Sdc1 shedding and collapse of the EG structure.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19035187
003      
CZ-PrNML
005      
20191010104611.0
007      
ta
008      
191007s2018 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1161/ATVBAHA.118.311143 $2 doi
035    __
$a (PubMed)29903730
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Manchanda, Kashish $u From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.). Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.). Cologne Cardiovascular Research Center, University of Cologne, Germany (K.M., S.B., A.K.).
245    10
$a MPO (Myeloperoxidase) Reduces Endothelial Glycocalyx Thickness Dependent on Its Cationic Charge / $c K. Manchanda, H. Kolarova, C. Kerkenpaß, M. Mollenhauer, J. Vitecek, V. Rudolph, L. Kubala, S. Baldus, M. Adam, A. Klinke,
520    9_
$a Objective- The leukocyte heme-enzyme MPO (myeloperoxidase) exerts proinflammatory effects on the vascular system primarily linked to its catalytic properties. Recent studies have shown that MPO, depending on its cationic charge, mediates neutrophil recruitment and activation. Here, we further investigated MPO's extracatalytic properties and its effect on endothelial glycocalyx (EG) integrity. Approach and Results- In vivo staining of murine cremaster muscle vessels with Alcian Blue 8GX provided evidence of an MPO-dependent decrease in anionic charge of the EG. MPO binding to the glycocalyx was further characterized using Chinese hamster ovary cells and its glycosaminoglycan mutants-pgsA-745 (mutant Chinese hamster ovary cells lacking heparan sulfate and chondroitin sulfate glycosaminoglycan) and pgsD-677 (mutant Chinese hamster ovary cells lacking heparan sulfate glycosaminoglycan), which revealed heparan sulfate as the main mediator of MPO binding. Further, EG integrity was assessed in terms of thickness using intravital microscopy of murine cremaster muscle. A significant reduction in EG thickness was observed on infusion of catalytically active MPO, as well as mutant inactive MPO and cationic polymer polylysine. Similar effects were also observed in wild-type mice after a local inflammatory stimulus but not in MPO-knockout mice. The reduction in EG thickness was reversed after removal of vessel-bound MPO, suggesting a possible physical collapse of the EG. Last, experiments with in vivo neutrophil depletion revealed that MPO also induced neutrophil-mediated shedding of the EG core protein, Sdc1 (syndecan-1). Conclusions- These findings provide evidence that MPO, via ionic interaction with heparan sulfate side chains, can cause neutrophil-dependent Sdc1 shedding and collapse of the EG structure.
650    _2
$a břišní svaly $x krevní zásobení $7 D000009
650    _2
$a zvířata $7 D000818
650    _2
$a CHO buňky $7 D016466
650    _2
$a kationty $7 D002412
650    _2
$a Cricetulus $7 D003412
650    _2
$a endoteliální buňky $x účinky léků $x metabolismus $x patologie $7 D042783
650    _2
$a glykokalyx $x účinky léků $x metabolismus $x patologie $7 D019276
650    _2
$a heparansulfát proteoglykany $x metabolismus $7 D019812
650    _2
$a endoteliální buňky pupečníkové žíly (lidské) $x účinky léků $x metabolismus $x patologie $7 D061307
650    _2
$a lidé $7 D006801
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a myši inbrední C57BL $7 D008810
650    _2
$a myši knockoutované $7 D018345
650    _2
$a aktivace neutrofilů $7 D018375
650    _2
$a neutrofily $x účinky léků $x metabolismus $7 D009504
650    _2
$a peroxidasa $x nedostatek $x genetika $x metabolismus $x farmakologie $7 D009195
650    _2
$a vazba proteinů $7 D011485
650    _2
$a syndekan-1 $x metabolismus $7 D053668
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kolarova, Hana $u Institute of Biophysics AS CR, Brno, Czech Republic (H.K., J.V., L.K.). International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (H.K., J.V., L.K., A.K.).
700    1_
$a Kerkenpaß, Christina $u From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.). Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.).
700    1_
$a Mollenhauer, Martin $u From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.). Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.).
700    1_
$a Vitecek, Jan $u Institute of Biophysics AS CR, Brno, Czech Republic (H.K., J.V., L.K.). International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (H.K., J.V., L.K., A.K.).
700    1_
$a Rudolph, Volker $u From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.). Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.).
700    1_
$a Kubala, Lukas $u Institute of Biophysics AS CR, Brno, Czech Republic (H.K., J.V., L.K.). International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (H.K., J.V., L.K., A.K.).
700    1_
$a Baldus, Stephan $u From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.). Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.). Cologne Cardiovascular Research Center, University of Cologne, Germany (K.M., S.B., A.K.).
700    1_
$a Adam, Matti $u From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.). Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.).
700    1_
$a Klinke, Anna $u From the Department of Cardiology, Heart Center, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.). Center for Molecular Medicine Cologne, University of Cologne, Germany (K.M., C.K., M.M., V.R., S.B., M.A., A.K.). International Clinical Research Center, St. Anne's University Hospital Brno, Czech Republic (H.K., J.V., L.K., A.K.). Cologne Cardiovascular Research Center, University of Cologne, Germany (K.M., S.B., A.K.).
773    0_
$w MED00000590 $t Arteriosclerosis, thrombosis, and vascular biology $x 1524-4636 $g Roč. 38, č. 8 (2018), s. 1859-1867
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29903730 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20191007 $b ABA008
991    __
$a 20191010105030 $b ABA008
999    __
$a ok $b bmc $g 1451847 $s 1073737
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 38 $c 8 $d 1859-1867 $e - $i 1524-4636 $m Arteriosclerosis, thrombosis and vascular biology $n Arterioscler Thromb Vasc Biol $x MED00000590
LZP    __
$a Pubmed-20191007

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...