-
Je něco špatně v tomto záznamu ?
Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury: An All-Atom Molecular Dynamics Study
MC. Owen, W. Kulig, T. Rog, I. Vattulainen, B. Strodel,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
263410
FiDiPro - International
290974
European Research Council - International
SFB 1208
Deutsche Forschungsgemeinschaft - International
NLK
ProQuest Central
od 1997-05-01 do Před 1 rokem
Medline Complete (EBSCOhost)
od 2000-01-01 do Před 1 rokem
Nursing & Allied Health Database (ProQuest)
od 1997-05-01 do Před 1 rokem
Health & Medicine (ProQuest)
od 1997-05-01 do Před 1 rokem
- MeSH
- cholesterol chemie metabolismus MeSH
- fosfatidylcholiny chemie metabolismus MeSH
- fosfolipidy chemie metabolismus MeSH
- fosforylcholin analogy a deriváty chemie metabolismus MeSH
- lipidové dvojvrstvy chemie metabolismus MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) glycerophospholipids, namely, 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), using atomistic molecular dynamics simulations. Increasing the content of oxidized phospholipids (oxPLs) from 0 to 60 mol% oxPL resulted in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does not form pores at concentrations of 60 mol% oxPL as was shown in previous simulations in the absence of cholesterol.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19035345
- 003
- CZ-PrNML
- 005
- 20191015114442.0
- 007
- ta
- 008
- 191007s2018 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00232-018-0028-9 $2 doi
- 035 __
- $a (PubMed)29550877
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Owen, Michael C $u Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany. michael.owen@ceitec.muni.cz. CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic. michael.owen@ceitec.muni.cz.
- 245 10
- $a Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury: An All-Atom Molecular Dynamics Study / $c MC. Owen, W. Kulig, T. Rog, I. Vattulainen, B. Strodel,
- 520 9_
- $a In an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) glycerophospholipids, namely, 1-palmitoyl-2-(9'-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PoxnoPC), and 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PazePC), using atomistic molecular dynamics simulations. Increasing the content of oxidized phospholipids (oxPLs) from 0 to 60 mol% oxPL resulted in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does not form pores at concentrations of 60 mol% oxPL as was shown in previous simulations in the absence of cholesterol.
- 650 _2
- $a cholesterol $x chemie $x metabolismus $7 D002784
- 650 _2
- $a lipidové dvojvrstvy $x chemie $x metabolismus $7 D008051
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a oxidace-redukce $7 D010084
- 650 _2
- $a oxidační stres $7 D018384
- 650 _2
- $a fosfatidylcholiny $x chemie $x metabolismus $7 D010713
- 650 _2
- $a fosfolipidy $x chemie $x metabolismus $7 D010743
- 650 _2
- $a fosforylcholin $x analogy a deriváty $x chemie $x metabolismus $7 D010767
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kulig, Waldemar $u Department of Physics, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland. Department of Physics, Tampere University of Technology, P. O. Box 692, 33101, Tampere, Finland.
- 700 1_
- $a Rog, Tomasz $u Department of Physics, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland. Department of Physics, Tampere University of Technology, P. O. Box 692, 33101, Tampere, Finland.
- 700 1_
- $a Vattulainen, Ilpo $u Department of Physics, University of Helsinki, P. O. Box 64, 00014, Helsinki, Finland. Department of Physics, Tampere University of Technology, P. O. Box 692, 33101, Tampere, Finland. MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
- 700 1_
- $a Strodel, Birgit $u Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany. b.strodel@fz-juelich.de. Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany. b.strodel@fz-juelich.de.
- 773 0_
- $w MED00002798 $t The Journal of membrane biology $x 1432-1424 $g Roč. 251, č. 3 (2018), s. 521-534
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29550877 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191015114907 $b ABA008
- 999 __
- $a ok $b bmc $g 1452005 $s 1073895
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 251 $c 3 $d 521-534 $e 20180317 $i 1432-1424 $m The Journal of membrane biology $n J Membr Biol $x MED00002798
- GRA __
- $a 263410 $p FiDiPro $2 International
- GRA __
- $a 290974 $p European Research Council $2 International
- GRA __
- $a SFB 1208 $p Deutsche Forschungsgemeinschaft $2 International
- LZP __
- $a Pubmed-20191007