-
Je něco špatně v tomto záznamu ?
Auxin molecular field maps define AUX1 selectivity: many auxin herbicides are not substrates
K. Hoyerova, P. Hosek, M. Quareshy, J. Li, P. Klima, M. Kubes, AA. Yemm, P. Neve, A. Tripathi, MJ. Bennett, RM. Napier,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/G023972/1
Biotechnology and Biological Sciences Research Council - United Kingdom
NLK
Free Medical Journals
od 1902 do Před 1 rokem
Wiley Free Content
od 1997 do Před 1 rokem
PubMed
29265374
DOI
10.1111/nph.14950
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis metabolismus MeSH
- biologické modely MeSH
- biotest MeSH
- herbicidy metabolismus MeSH
- indoly metabolismus MeSH
- inhibiční koncentrace 50 MeSH
- kořeny rostlin růst a vývoj MeSH
- kyselina 2,4-dichlorfenoxyoctová metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- mutace genetika MeSH
- proteiny huseníčku metabolismus MeSH
- semenáček růst a vývoj MeSH
- substrátová specifita MeSH
- tabák cytologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Developmental responses to auxin are regulated by facilitated uptake and efflux, but detailed molecular understanding of the carrier proteins is incomplete. We have used pharmacological tools to explore the chemical space that defines substrate preferences for the auxin uptake carrier AUX1. Total and partial loss-of-function aux1 mutants were assessed against wild-type for dose-dependent resistance to a range of auxins and analogues. We then developed an auxin accumulation assay with associated mathematical modelling to enumerate accurate IC50 values for a small library of auxin analogues. The structure activity relationship data were analysed using molecular field analyses to create a pharmacophoric atlas of AUX1 substrates. The uptake carrier exhibits a very high level of selectivity towards small substrates including the natural indole-3-acetic acid, and the synthetic auxin 2,4-dichlorophenoxyacetic acid. No AUX1 activity was observed for herbicides based on benzoic acid (dicamba), pyridinyloxyacetic acid (triclopyr) or the 6-arylpicolinates (halauxifen), and very low affinity was found for picolinic acid-based auxins (picloram) and quinolinecarboxylic acids (quinclorac). The atlas demonstrates why some widely used auxin herbicides are not, or are very poor substrates. We list molecular descriptors for AUX1 substrates and discuss our findings in terms of herbicide resistance management.
Rothamsted Research Harpenden AL5 2JQ UK
School of Life Sciences University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19035467
- 003
- CZ-PrNML
- 005
- 20191014120957.0
- 007
- ta
- 008
- 191007s2018 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/nph.14950 $2 doi
- 035 __
- $a (PubMed)29265374
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Hoyerova, Klara $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02, Prague 6, Czech Republic.
- 245 10
- $a Auxin molecular field maps define AUX1 selectivity: many auxin herbicides are not substrates / $c K. Hoyerova, P. Hosek, M. Quareshy, J. Li, P. Klima, M. Kubes, AA. Yemm, P. Neve, A. Tripathi, MJ. Bennett, RM. Napier,
- 520 9_
- $a Developmental responses to auxin are regulated by facilitated uptake and efflux, but detailed molecular understanding of the carrier proteins is incomplete. We have used pharmacological tools to explore the chemical space that defines substrate preferences for the auxin uptake carrier AUX1. Total and partial loss-of-function aux1 mutants were assessed against wild-type for dose-dependent resistance to a range of auxins and analogues. We then developed an auxin accumulation assay with associated mathematical modelling to enumerate accurate IC50 values for a small library of auxin analogues. The structure activity relationship data were analysed using molecular field analyses to create a pharmacophoric atlas of AUX1 substrates. The uptake carrier exhibits a very high level of selectivity towards small substrates including the natural indole-3-acetic acid, and the synthetic auxin 2,4-dichlorophenoxyacetic acid. No AUX1 activity was observed for herbicides based on benzoic acid (dicamba), pyridinyloxyacetic acid (triclopyr) or the 6-arylpicolinates (halauxifen), and very low affinity was found for picolinic acid-based auxins (picloram) and quinolinecarboxylic acids (quinclorac). The atlas demonstrates why some widely used auxin herbicides are not, or are very poor substrates. We list molecular descriptors for AUX1 substrates and discuss our findings in terms of herbicide resistance management.
- 650 _2
- $a kyselina 2,4-dichlorfenoxyoctová $x metabolismus $7 D015084
- 650 _2
- $a Arabidopsis $x metabolismus $7 D017360
- 650 _2
- $a proteiny huseníčku $x metabolismus $7 D029681
- 650 _2
- $a biotest $7 D001681
- 650 _2
- $a herbicidy $x metabolismus $7 D006540
- 650 _2
- $a kyseliny indoloctové $x metabolismus $7 D007210
- 650 _2
- $a indoly $x metabolismus $7 D007211
- 650 _2
- $a inhibiční koncentrace 50 $7 D020128
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a mutace $x genetika $7 D009154
- 650 _2
- $a kořeny rostlin $x růst a vývoj $7 D018517
- 650 _2
- $a semenáček $x růst a vývoj $7 D036226
- 650 _2
- $a substrátová specifita $7 D013379
- 650 _2
- $a tabák $x cytologie $7 D014026
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hosek, Petr $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02, Prague 6, Czech Republic.
- 700 1_
- $a Quareshy, Mussa $u School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
- 700 1_
- $a Li, Jun $u Department of Pesticide Science, College of Crop Protection, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu Province, China.
- 700 1_
- $a Klima, Petr $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02, Prague 6, Czech Republic.
- 700 1_
- $a Kubes, Martin $u Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Rozvojova 263, 165 02, Prague 6, Czech Republic. Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 241/27, 78371, Olomouc, Czech Republic.
- 700 1_
- $a Yemm, Antony A $u School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
- 700 1_
- $a Neve, Paul $u Rothamsted Research, Harpenden, AL5 2JQ, UK.
- 700 1_
- $a Tripathi, Ashutosh $u School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
- 700 1_
- $a Bennett, Malcolm J $u Plant Sciences Division and Centre for Plant Integrative Biology, School of Biological Sciences, The University of Nottingham, Sutton Bonnington Campus, Loughborough, LE12 5RD, UK.
- 700 1_
- $a Napier, Richard M $u School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
- 773 0_
- $w MED00007692 $t The New phytologist $x 1469-8137 $g Roč. 217, č. 4 (2018), s. 1625-1639
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29265374 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20191007 $b ABA008
- 991 __
- $a 20191014121421 $b ABA008
- 999 __
- $a ok $b bmc $g 1452127 $s 1074017
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 217 $c 4 $d 1625-1639 $e 20171219 $i 1469-8137 $m New phytologist $n New Phytol $x MED00007692
- GRA __
- $a BB/G023972/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20191007