-
Something wrong with this record ?
Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions
M. Javanainen, G. Enkavi, R. Guixà-Gonzaléz, W. Kulig, H. Martinez-Seara, I. Levental, I. Vattulainen,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2005
Free Medical Journals
from 2005
Public Library of Science (PLoS)
from 2005
PubMed Central
from 2005
Europe PubMed Central
from 2005
ProQuest Central
from 2005-06-01
Open Access Digital Library
from 2005-01-01
Open Access Digital Library
from 2005-01-01
Open Access Digital Library
from 2005-06-01
Medline Complete (EBSCOhost)
from 2005-06-01
Health & Medicine (ProQuest)
from 2005-06-01
ROAD: Directory of Open Access Scholarly Resources
from 2005
- MeSH
- Cholesterol metabolism MeSH
- Protein Conformation MeSH
- Docosahexaenoic Acids chemistry metabolism MeSH
- Humans MeSH
- Membrane Microdomains chemistry metabolism MeSH
- Membrane Proteins chemistry metabolism MeSH
- Models, Neurological MeSH
- Models, Molecular MeSH
- Brain metabolism MeSH
- Fatty Acids, Unsaturated metabolism MeSH
- Sensory Receptor Cells chemistry metabolism MeSH
- Computer Simulation MeSH
- Receptor, Adenosine A2A chemistry metabolism MeSH
- Receptors, G-Protein-Coupled chemistry metabolism MeSH
- Signal Transduction MeSH
- Thermodynamics MeSH
- Computational Biology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
G protein-coupled receptors (GPCRs) control cellular signaling and responses. Many of these GPCRs are modulated by cholesterol and polyunsaturated fatty acids (PUFAs) which have been shown to co-exist with saturated lipids in ordered membrane domains. However, the lipid compositions of such domains extracted from the brain cortex tissue of individuals suffering from GPCR-associated neurological disorders show drastically lowered levels of PUFAs. Here, using free energy techniques and multiscale simulations of numerous membrane proteins, we show that the presence of the PUFA DHA helps helical multi-pass proteins such as GPCRs partition into ordered membrane domains. The mechanism is based on hybrid lipids, whose PUFA chains coat the rough protein surface, while the saturated chains face the raft environment, thus minimizing perturbations therein. Our findings suggest that the reduction of GPCR partitioning to their native ordered environments due to PUFA depletion might affect the function of these receptors in numerous neurodegenerative diseases, where the membrane PUFA levels in the brain are decreased. We hope that this work inspires experimental studies on the connection between membrane PUFA levels and GPCR signaling.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19044818
- 003
- CZ-PrNML
- 005
- 20200116110442.0
- 007
- ta
- 008
- 200109s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1371/journal.pcbi.1007033 $2 doi
- 035 __
- $a (PubMed)31107861
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Javanainen, Matti $u Computational Physics Laboratory, Tampere University, Tampere, Finland. Department of Physics, University of Helsinki, Helsinki, Finland. Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
- 245 10
- $a Reduced level of docosahexaenoic acid shifts GPCR neuroreceptors to less ordered membrane regions / $c M. Javanainen, G. Enkavi, R. Guixà-Gonzaléz, W. Kulig, H. Martinez-Seara, I. Levental, I. Vattulainen,
- 520 9_
- $a G protein-coupled receptors (GPCRs) control cellular signaling and responses. Many of these GPCRs are modulated by cholesterol and polyunsaturated fatty acids (PUFAs) which have been shown to co-exist with saturated lipids in ordered membrane domains. However, the lipid compositions of such domains extracted from the brain cortex tissue of individuals suffering from GPCR-associated neurological disorders show drastically lowered levels of PUFAs. Here, using free energy techniques and multiscale simulations of numerous membrane proteins, we show that the presence of the PUFA DHA helps helical multi-pass proteins such as GPCRs partition into ordered membrane domains. The mechanism is based on hybrid lipids, whose PUFA chains coat the rough protein surface, while the saturated chains face the raft environment, thus minimizing perturbations therein. Our findings suggest that the reduction of GPCR partitioning to their native ordered environments due to PUFA depletion might affect the function of these receptors in numerous neurodegenerative diseases, where the membrane PUFA levels in the brain are decreased. We hope that this work inspires experimental studies on the connection between membrane PUFA levels and GPCR signaling.
- 650 _2
- $a mozek $x metabolismus $7 D001921
- 650 _2
- $a cholesterol $x metabolismus $7 D002784
- 650 _2
- $a výpočetní biologie $7 D019295
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a kyseliny dokosahexaenové $x chemie $x metabolismus $7 D004281
- 650 _2
- $a nenasycené mastné kyseliny $x metabolismus $7 D005231
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a membránové mikrodomény $x chemie $x metabolismus $7 D021962
- 650 _2
- $a membránové proteiny $x chemie $x metabolismus $7 D008565
- 650 _2
- $a molekulární modely $7 D008958
- 650 _2
- $a modely neurologické $7 D008959
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a receptor adenosinový A2A $x chemie $x metabolismus $7 D043705
- 650 _2
- $a receptory spřažené s G-proteiny $x chemie $x metabolismus $7 D043562
- 650 _2
- $a nervové receptory $x chemie $x metabolismus $7 D011984
- 650 _2
- $a signální transdukce $7 D015398
- 650 _2
- $a termodynamika $7 D013816
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Enkavi, Giray $u Computational Physics Laboratory, Tampere University, Tampere, Finland. Department of Physics, University of Helsinki, Helsinki, Finland.
- 700 1_
- $a Guixà-Gonzaléz, Ramon $u Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain.
- 700 1_
- $a Kulig, Waldemar $u Computational Physics Laboratory, Tampere University, Tampere, Finland. Department of Physics, University of Helsinki, Helsinki, Finland.
- 700 1_
- $a Martinez-Seara, Hector $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Levental, Ilya $u Department of Integrated Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, United States of America.
- 700 1_
- $a Vattulainen, Ilpo $u Computational Physics Laboratory, Tampere University, Tampere, Finland. Department of Physics, University of Helsinki, Helsinki, Finland. MEMPHYS - Center for Biomembrane Physics.
- 773 0_
- $w MED00008919 $t PLoS computational biology $x 1553-7358 $g Roč. 15, č. 5 (2019), s. e1007033
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31107861 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20200116110816 $b ABA008
- 999 __
- $a ok $b bmc $g 1483087 $s 1083491
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 15 $c 5 $d e1007033 $e 20190520 $i 1553-7358 $m PLoS computational biology $n PLoS Comput Biol $x MED00008919
- LZP __
- $a Pubmed-20200109