-
Something wrong with this record ?
Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain
I. Macova, K. Pysanenko, T. Chumak, M. Dvorakova, R. Bohuslavova, J. Syka, B. Fritzsch, G. Pavlinkova,
Language English Country United States
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 AG060504
NIA NIH HHS - United States
NLK
Free Medical Journals
from 1981 to 6 months ago
PubMed Central
from 1981 to 6 months ago
Europe PubMed Central
from 1981 to 6 months ago
Open Access Digital Library
from 1981-01-01
Open Access Digital Library
from 1981-01-01
- MeSH
- Behavior, Animal physiology MeSH
- Inferior Colliculi anatomy & histology physiology MeSH
- Spiral Ganglion cytology physiology MeSH
- Brain Mapping MeSH
- Mesencephalon embryology physiology MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Cochlear Nucleus anatomy & histology physiology MeSH
- Hearing physiology MeSH
- Auditory Perception genetics physiology MeSH
- Pregnancy MeSH
- Basic Helix-Loop-Helix Transcription Factors genetics physiology MeSH
- Reflex, Startle genetics physiology MeSH
- Vestibule, Labyrinth anatomy & histology physiology MeSH
- Pitch Perception physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Pregnancy MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Hearing depends on extracting frequency, intensity, and temporal properties from sound to generate an auditory map for acoustical signal processing. How physiology intersects with molecular specification to fine tune the developing properties of the auditory system that enable these aspects remains unclear. We made a novel conditional deletion model that eliminates the transcription factor NEUROD1 exclusively in the ear. These mice (both sexes) develop a truncated frequency range with no neuroanatomically recognizable mapping of spiral ganglion neurons onto distinct locations in the cochlea nor a cochleotopic map presenting topographically discrete projections to the cochlear nuclei. The disorganized primary cochleotopic map alters tuning properties of the inferior colliculus units, which display abnormal frequency, intensity, and temporal sound coding. At the behavioral level, animals show alterations in the acoustic startle response, consistent with altered neuroanatomical and physiological properties. We demonstrate that absence of the primary afferent topology during embryonic development leads to dysfunctional tonotopy of the auditory system. Such effects have never been investigated in other sensory systems because of the lack of comparable single gene mutation models.SIGNIFICANCE STATEMENT All sensory systems form a topographical map of neuronal projections from peripheral sensory organs to the brain. Neuronal projections in the auditory pathway are cochleotopically organized, providing a tonotopic map of sound frequencies. Primary sensory maps typically arise by molecular cues, requiring physiological refinements. Past work has demonstrated physiologic plasticity in many senses without ever molecularly undoing the specific mapping of an entire primary sensory projection. We genetically manipulated primary auditory neurons to generate a scrambled cochleotopic projection. Eliminating tonotopic representation to auditory nuclei demonstrates the inability of physiological processes to restore a tonotopic presentation of sound in the midbrain. Our data provide the first insights into the limits of physiology-mediated brainstem plasticity during the development of the auditory system.
Department of Biology University of Iowa Iowa City Iowa 52242 and
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19045096
- 003
- CZ-PrNML
- 005
- 20240624150045.0
- 007
- ta
- 008
- 200109s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1523/JNEUROSCI.2557-18.2018 $2 doi
- 035 __
- $a (PubMed)30541910
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Macova, Iva $u Institute of Biotechnology CAS, Vestec, Czechia 25250. Faculty of Science, Charles University, Prague, Czechia 12843.
- 245 10
- $a Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain / $c I. Macova, K. Pysanenko, T. Chumak, M. Dvorakova, R. Bohuslavova, J. Syka, B. Fritzsch, G. Pavlinkova,
- 520 9_
- $a Hearing depends on extracting frequency, intensity, and temporal properties from sound to generate an auditory map for acoustical signal processing. How physiology intersects with molecular specification to fine tune the developing properties of the auditory system that enable these aspects remains unclear. We made a novel conditional deletion model that eliminates the transcription factor NEUROD1 exclusively in the ear. These mice (both sexes) develop a truncated frequency range with no neuroanatomically recognizable mapping of spiral ganglion neurons onto distinct locations in the cochlea nor a cochleotopic map presenting topographically discrete projections to the cochlear nuclei. The disorganized primary cochleotopic map alters tuning properties of the inferior colliculus units, which display abnormal frequency, intensity, and temporal sound coding. At the behavioral level, animals show alterations in the acoustic startle response, consistent with altered neuroanatomical and physiological properties. We demonstrate that absence of the primary afferent topology during embryonic development leads to dysfunctional tonotopy of the auditory system. Such effects have never been investigated in other sensory systems because of the lack of comparable single gene mutation models.SIGNIFICANCE STATEMENT All sensory systems form a topographical map of neuronal projections from peripheral sensory organs to the brain. Neuronal projections in the auditory pathway are cochleotopically organized, providing a tonotopic map of sound frequencies. Primary sensory maps typically arise by molecular cues, requiring physiological refinements. Past work has demonstrated physiologic plasticity in many senses without ever molecularly undoing the specific mapping of an entire primary sensory projection. We genetically manipulated primary auditory neurons to generate a scrambled cochleotopic projection. Eliminating tonotopic representation to auditory nuclei demonstrates the inability of physiological processes to restore a tonotopic presentation of sound in the midbrain. Our data provide the first insights into the limits of physiology-mediated brainstem plasticity during the development of the auditory system.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a sluchová percepce $x genetika $x fyziologie $7 D001307
- 650 _2
- $a transkripční faktory bHLH $x genetika $x fyziologie $7 D051792
- 650 _2
- $a chování zvířat $x fyziologie $7 D001522
- 650 _2
- $a mapování mozku $7 D001931
- 650 _2
- $a nucleus cochlearis $x anatomie a histologie $x fyziologie $7 D017626
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a sluch $x fyziologie $7 D006309
- 650 _2
- $a colliculus inferior $x anatomie a histologie $x fyziologie $7 D007245
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a mezencefalon $x embryologie $x fyziologie $7 D008636
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši knockoutované $7 D018345
- 650 _2
- $a vnímání výšky zvuku $x fyziologie $7 D010898
- 650 _2
- $a těhotenství $7 D011247
- 650 _2
- $a úleková reakce $x genetika $x fyziologie $7 D013216
- 650 _2
- $a ganglion spirale $x cytologie $x fyziologie $7 D013136
- 650 _2
- $a vestibulární aparát $x anatomie a histologie $x fyziologie $7 D014722
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pysanenko, Kateryna $u Institute of Experimental Medicine CAS, Prague, Czechia 14220.
- 700 1_
- $a Chumak, Tetyana $u Institute of Experimental Medicine CAS, Prague, Czechia 14220.
- 700 1_
- $a Dvorakova, Martina $u Institute of Biotechnology CAS, Vestec, Czechia 25250. Faculty of Science, Charles University, Prague, Czechia 12843.
- 700 1_
- $a Bohuslavova, Romana $u Institute of Biotechnology CAS, Vestec, Czechia 25250.
- 700 1_
- $a Syka, Josef $u Institute of Experimental Medicine CAS, Prague, Czechia 14220.
- 700 1_
- $a Fritzsch, Bernd $u Department of Biology, University of Iowa, Iowa City, Iowa 52242, and Gabriela.Pavlinkova@ibt.cas.cz bernd-fritzsch@uiowa.edu.
- 700 1_
- $a Pavlínková, Gabriela, $u Institute of Biotechnology CAS, Vestec, Czechia 25250, Gabriela.Pavlinkova@ibt.cas.cz bernd-fritzsch@uiowa.edu. $d 1966- $7 xx0319150
- 773 0_
- $w MED00002840 $t The Journal of neuroscience $x 1529-2401 $g Roč. 39, č. 6 (2019), s. 984-1004
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30541910 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20240624150042 $b ABA008
- 999 __
- $a ok $b bmc $g 1483365 $s 1083769
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 39 $c 6 $d 984-1004 $e 20181212 $i 1529-2401 $m The Journal of neuroscience $n J Neurosci $x MED00002840
- GRA __
- $a R01 AG060504 $p NIA NIH HHS $2 United States
- LZP __
- $a Pubmed-20200109