• Something wrong with this record ?

Proliferation inhibition of novel diphenylamine derivatives

L. Janovec, J. Janočková, M. Matejová, E. Konkoľová, H. Paulíková, D. Lichancová, L. Júnošová, S. Hamuľaková, J. Imrich, M. Kožurková,

. 2019 ; 83 (-) : 487-499. [pub] 20181102

Language English Country United States

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most widely used drugs in the world but some NSAIDs such as diclofenac and tolfenamic acid display levels of cytotoxicity, an effect which has been attributed to the presence of diphenylamine contained in their structures. A novel series of diphenylamine derivatives were synthetised and evaluated for their cytotoxic activities and proliferation inhibition. The most active compounds in the cytotoxicity tests were derivative 6g with an IC50 value of 2.5 ± 1.1 × 10-6 M and derivative 6f with an IC50 value of 6.0 ± 3.0 × 10-6 M (L1210 cell line) after 48 h incubation. The results demonstrate that leukemic L1210 cells were much more sensitive to compounds 6f and 6g than the HEK293T cells (IC50 = 35 × 10-6 M for 6f and IC50 > 50 × 10-6 M for 6g) and NIH-3T3 (IC50 > 50 × 10-6 M for both derivatives). The IC50 values show that these substances may selectively kill leukemic cells over non-cancer cells. Cell cycle analysis revealed that a primary trend of the diphenylamine derivatives was to arrest the cells in the G1-phase of the cell cycle within the first 24 h. UV-visible, fluorescence spectroscopy and circular dichroism were used in order to study the binding mode of the novel compounds with DNA. The binding constants determined by UV-visible spectroscopy were found to be in the range of 2.1-8.7 × 104 M-1. We suggest that the observed trend for binding constant K is likely to be a result of different binding thermodynamics accompanying the formation of the complexes.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045129
003      
CZ-PrNML
005      
20200113085435.0
007      
ta
008      
200109s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.bioorg.2018.10.063 $2 doi
035    __
$a (PubMed)30453141
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Janovec, Ladislav $u Department of Organic Chemistry, P. J. Safarik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic. Electronic address: ladislav.janovec@upjs.sk.
245    10
$a Proliferation inhibition of novel diphenylamine derivatives / $c L. Janovec, J. Janočková, M. Matejová, E. Konkoľová, H. Paulíková, D. Lichancová, L. Júnošová, S. Hamuľaková, J. Imrich, M. Kožurková,
520    9_
$a Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most widely used drugs in the world but some NSAIDs such as diclofenac and tolfenamic acid display levels of cytotoxicity, an effect which has been attributed to the presence of diphenylamine contained in their structures. A novel series of diphenylamine derivatives were synthetised and evaluated for their cytotoxic activities and proliferation inhibition. The most active compounds in the cytotoxicity tests were derivative 6g with an IC50 value of 2.5 ± 1.1 × 10-6 M and derivative 6f with an IC50 value of 6.0 ± 3.0 × 10-6 M (L1210 cell line) after 48 h incubation. The results demonstrate that leukemic L1210 cells were much more sensitive to compounds 6f and 6g than the HEK293T cells (IC50 = 35 × 10-6 M for 6f and IC50 > 50 × 10-6 M for 6g) and NIH-3T3 (IC50 > 50 × 10-6 M for both derivatives). The IC50 values show that these substances may selectively kill leukemic cells over non-cancer cells. Cell cycle analysis revealed that a primary trend of the diphenylamine derivatives was to arrest the cells in the G1-phase of the cell cycle within the first 24 h. UV-visible, fluorescence spectroscopy and circular dichroism were used in order to study the binding mode of the novel compounds with DNA. The binding constants determined by UV-visible spectroscopy were found to be in the range of 2.1-8.7 × 104 M-1. We suggest that the observed trend for binding constant K is likely to be a result of different binding thermodynamics accompanying the formation of the complexes.
650    _2
$a zvířata $7 D000818
650    _2
$a protinádorové látky $x chemická syntéza $x chemie $x farmakologie $7 D000970
650    _2
$a benzimidazoly $x chemie $7 D001562
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a proliferace buněk $x účinky léků $7 D049109
650    _2
$a DNA $x chemie $x účinky léků $7 D004247
650    _2
$a difenylamin $x analogy a deriváty $x chemická syntéza $x farmakologie $7 D004159
650    _2
$a fluorescenční barviva $x chemie $7 D005456
650    _2
$a kontrolní body fáze G1 buněčného cyklu $x účinky léků $7 D059585
650    _2
$a HEK293 buňky $7 D057809
650    _2
$a lidé $7 D006801
650    _2
$a interkalátory $x chemická syntéza $x chemie $x farmakologie $7 D007364
650    _2
$a myši $7 D051379
650    _2
$a simulace molekulového dockingu $7 D062105
650    _2
$a simulace molekulární dynamiky $7 D056004
650    _2
$a buňky NIH 3T3 $7 D041681
650    _2
$a termodynamika $7 D013816
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Janočková, Jana $u Department of Biochemistry, P. J. Safarik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolovska 581, Hradec Kralove, Czech Republic.
700    1_
$a Matejová, Mária $u Department of Organic Chemistry, P. J. Safarik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic.
700    1_
$a Konkoľová, Eva $u Department of Biochemistry, P. J. Safarik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic.
700    1_
$a Paulíková, Helena $u Department of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinskeho 9, 81237 Bratislava, Slovak Republic.
700    1_
$a Lichancová, Daniela $u Department of Biochemistry, P. J. Safarik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic.
700    1_
$a Júnošová, Lenka $u Department of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak Technical University, Radlinskeho 9, 81237 Bratislava, Slovak Republic.
700    1_
$a Hamuľaková, Slávka $u Department of Organic Chemistry, P. J. Safarik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic.
700    1_
$a Imrich, Ján $u Department of Organic Chemistry, P. J. Safarik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic.
700    1_
$a Kožurková, Mária $u Department of Biochemistry, P. J. Safarik University, Faculty of Science, Moyzesova 11, 04001 Kosice, Slovak Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolovska 581, Hradec Kralove, Czech Republic.
773    0_
$w MED00000771 $t Bioorganic chemistry $x 1090-2120 $g Roč. 83, č. - (2019), s. 487-499
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30453141 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200113085807 $b ABA008
999    __
$a ok $b bmc $g 1483398 $s 1083802
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 83 $c - $d 487-499 $e 20181102 $i 1090-2120 $m Bioorganic chemistry $n Bioorg Chem $x MED00000771
LZP    __
$a Pubmed-20200109

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...