Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation

H. Barosova, S. Chortarea, P. Peikertova, MJD. Clift, A. Petri-Fink, J. Kukutschova, B. Rothen-Rutishauser,

. 2018 ; 92 (7) : 2339-2351. [pub] 20180510

Language English Country Germany

Document type Journal Article

E-resources Online Full text

NLK ProQuest Central from 2002-01-01 to 1 year ago
Medline Complete (EBSCOhost) from 2000-01-01 to 1 year ago
Health & Medicine (ProQuest) from 2002-01-01 to 1 year ago
Public Health Database (ProQuest) from 2002-01-01 to 1 year ago

Wear particles from automotive friction brake pads of various sizes, morphology, and chemical composition are significant contributors towards particulate matter. Knowledge concerning the potential adverse effects following inhalation exposure to brake wear debris is limited. Our aim was, therefore, to generate brake wear particles released from commercial low-metallic and non-asbestos organic automotive brake pads used in mid-size passenger cars by a full-scale brake dynamometer with an environmental chamber simulating urban driving and to deduce their potential hazard in vitro. The collected fractions were analysed using scanning electron microscopy via energy-dispersive X-ray spectroscopy (SEM-EDS) and Raman microspectroscopy. The biological impact of the samples was investigated using a human 3D multicellular model consisting of human epithelial cells (A549) and human primary immune cells (macrophages and dendritic cells) mimicking the human epithelial tissue barrier. The viability, morphology, oxidative stress, and (pro-)inflammatory response of the cells were assessed following 24 h exposure to ~ 12, ~ 24, and ~ 48 µg/cm2 of non-airborne samples and to ~ 3.7 µg/cm2 of different brake wear size fractions (2-4, 1-2, and 0.25-1 µm) applying a pseudo-air-liquid interface approach. Brake wear debris with low-metallic formula does not induce any adverse biological effects to the in vitro lung multicellular model. Brake wear particles from non-asbestos organic formulated pads, however, induced increased (pro-)inflammatory mediator release from the same in vitro system. The latter finding can be attributed to the different particle compositions, specifically the presence of anatase.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19045459
003      
CZ-PrNML
005      
20200113083329.0
007      
ta
008      
200109s2018 gw f 000 0|eng||
009      
AR
024    7_
$a 10.1007/s00204-018-2218-8 $2 doi
035    __
$a (PubMed)29748788
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a gw
100    1_
$a Barosova, Hana $u BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland. Nanotechnology Centre, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
245    10
$a Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation / $c H. Barosova, S. Chortarea, P. Peikertova, MJD. Clift, A. Petri-Fink, J. Kukutschova, B. Rothen-Rutishauser,
520    9_
$a Wear particles from automotive friction brake pads of various sizes, morphology, and chemical composition are significant contributors towards particulate matter. Knowledge concerning the potential adverse effects following inhalation exposure to brake wear debris is limited. Our aim was, therefore, to generate brake wear particles released from commercial low-metallic and non-asbestos organic automotive brake pads used in mid-size passenger cars by a full-scale brake dynamometer with an environmental chamber simulating urban driving and to deduce their potential hazard in vitro. The collected fractions were analysed using scanning electron microscopy via energy-dispersive X-ray spectroscopy (SEM-EDS) and Raman microspectroscopy. The biological impact of the samples was investigated using a human 3D multicellular model consisting of human epithelial cells (A549) and human primary immune cells (macrophages and dendritic cells) mimicking the human epithelial tissue barrier. The viability, morphology, oxidative stress, and (pro-)inflammatory response of the cells were assessed following 24 h exposure to ~ 12, ~ 24, and ~ 48 µg/cm2 of non-airborne samples and to ~ 3.7 µg/cm2 of different brake wear size fractions (2-4, 1-2, and 0.25-1 µm) applying a pseudo-air-liquid interface approach. Brake wear debris with low-metallic formula does not induce any adverse biological effects to the in vitro lung multicellular model. Brake wear particles from non-asbestos organic formulated pads, however, induced increased (pro-)inflammatory mediator release from the same in vitro system. The latter finding can be attributed to the different particle compositions, specifically the presence of anatase.
650    _2
$a buňky A549 $7 D000072283
650    _2
$a látky znečišťující vzduch $x toxicita $7 D000393
650    _2
$a viabilita buněk $x účinky léků $7 D002470
650    _2
$a kokultivační techniky $7 D018920
650    _2
$a cytokiny $x metabolismus $7 D016207
650    _2
$a dendritické buňky $x účinky léků $x metabolismus $x ultrastruktura $7 D003713
650    _2
$a lidé $7 D006801
650    _2
$a plíce $x účinky léků $x metabolismus $x patologie $7 D008168
650    _2
$a makrofágy $x účinky léků $x metabolismus $x ultrastruktura $7 D008264
650    12
$a biologické modely $7 D008954
650    _2
$a motorová vozidla $7 D018986
650    _2
$a oxidační stres $x účinky léků $7 D018384
650    _2
$a velikost částic $7 D010316
650    _2
$a pevné částice $x toxicita $7 D052638
650    _2
$a povrchové vlastnosti $7 D013499
655    _2
$a časopisecké články $7 D016428
700    1_
$a Chortarea, Savvina $u BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland. Laboratory for Materials-Biology Interactions, Empa, Swiss Federal Laboratories for Materials, Science and Technology, St. Gallen, Switzerland.
700    1_
$a Peikertova, Pavlina $u Nanotechnology Centre, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Clift, Martin J D $u BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland. In Vitro Toxicology Group, Swansea University Medical School, Swansea, Wales, UK.
700    1_
$a Petri-Fink, Alke $u BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland. Chemistry Department, University of Fribourg, Fribourg, Switzerland.
700    1_
$a Kukutschova, Jana $u Nanotechnology Centre, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Rothen-Rutishauser, Barbara $u BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland. barbara.rothen@unifr.ch.
773    0_
$w MED00009265 $t Archives of toxicology $x 1432-0738 $g Roč. 92, č. 7 (2018), s. 2339-2351
856    41
$u https://pubmed.ncbi.nlm.nih.gov/29748788 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200109 $b ABA008
991    __
$a 20200113083701 $b ABA008
999    __
$a ok $b bmc $g 1483728 $s 1084132
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2018 $b 92 $c 7 $d 2339-2351 $e 20180510 $i 1432-0738 $m Archives of toxicology $n Arch Toxicol $x MED00009265
LZP    __
$a Pubmed-20200109

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...