-
Something wrong with this record ?
Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation
H. Barosova, S. Chortarea, P. Peikertova, MJD. Clift, A. Petri-Fink, J. Kukutschova, B. Rothen-Rutishauser,
Language English Country Germany
Document type Journal Article
NLK
ProQuest Central
from 2002-01-01 to 1 year ago
Medline Complete (EBSCOhost)
from 2000-01-01 to 1 year ago
Health & Medicine (ProQuest)
from 2002-01-01 to 1 year ago
Public Health Database (ProQuest)
from 2002-01-01 to 1 year ago
- MeSH
- Models, Biological * MeSH
- A549 Cells MeSH
- Cytokines metabolism MeSH
- Dendritic Cells drug effects metabolism ultrastructure MeSH
- Coculture Techniques MeSH
- Air Pollutants toxicity MeSH
- Humans MeSH
- Macrophages drug effects metabolism ultrastructure MeSH
- Motor Vehicles MeSH
- Oxidative Stress drug effects MeSH
- Particulate Matter toxicity MeSH
- Lung drug effects metabolism pathology MeSH
- Surface Properties MeSH
- Particle Size MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Wear particles from automotive friction brake pads of various sizes, morphology, and chemical composition are significant contributors towards particulate matter. Knowledge concerning the potential adverse effects following inhalation exposure to brake wear debris is limited. Our aim was, therefore, to generate brake wear particles released from commercial low-metallic and non-asbestos organic automotive brake pads used in mid-size passenger cars by a full-scale brake dynamometer with an environmental chamber simulating urban driving and to deduce their potential hazard in vitro. The collected fractions were analysed using scanning electron microscopy via energy-dispersive X-ray spectroscopy (SEM-EDS) and Raman microspectroscopy. The biological impact of the samples was investigated using a human 3D multicellular model consisting of human epithelial cells (A549) and human primary immune cells (macrophages and dendritic cells) mimicking the human epithelial tissue barrier. The viability, morphology, oxidative stress, and (pro-)inflammatory response of the cells were assessed following 24 h exposure to ~ 12, ~ 24, and ~ 48 µg/cm2 of non-airborne samples and to ~ 3.7 µg/cm2 of different brake wear size fractions (2-4, 1-2, and 0.25-1 µm) applying a pseudo-air-liquid interface approach. Brake wear debris with low-metallic formula does not induce any adverse biological effects to the in vitro lung multicellular model. Brake wear particles from non-asbestos organic formulated pads, however, induced increased (pro-)inflammatory mediator release from the same in vitro system. The latter finding can be attributed to the different particle compositions, specifically the presence of anatase.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19045459
- 003
- CZ-PrNML
- 005
- 20200113083329.0
- 007
- ta
- 008
- 200109s2018 gw f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1007/s00204-018-2218-8 $2 doi
- 035 __
- $a (PubMed)29748788
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a gw
- 100 1_
- $a Barosova, Hana $u BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland. Nanotechnology Centre, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
- 245 10
- $a Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation / $c H. Barosova, S. Chortarea, P. Peikertova, MJD. Clift, A. Petri-Fink, J. Kukutschova, B. Rothen-Rutishauser,
- 520 9_
- $a Wear particles from automotive friction brake pads of various sizes, morphology, and chemical composition are significant contributors towards particulate matter. Knowledge concerning the potential adverse effects following inhalation exposure to brake wear debris is limited. Our aim was, therefore, to generate brake wear particles released from commercial low-metallic and non-asbestos organic automotive brake pads used in mid-size passenger cars by a full-scale brake dynamometer with an environmental chamber simulating urban driving and to deduce their potential hazard in vitro. The collected fractions were analysed using scanning electron microscopy via energy-dispersive X-ray spectroscopy (SEM-EDS) and Raman microspectroscopy. The biological impact of the samples was investigated using a human 3D multicellular model consisting of human epithelial cells (A549) and human primary immune cells (macrophages and dendritic cells) mimicking the human epithelial tissue barrier. The viability, morphology, oxidative stress, and (pro-)inflammatory response of the cells were assessed following 24 h exposure to ~ 12, ~ 24, and ~ 48 µg/cm2 of non-airborne samples and to ~ 3.7 µg/cm2 of different brake wear size fractions (2-4, 1-2, and 0.25-1 µm) applying a pseudo-air-liquid interface approach. Brake wear debris with low-metallic formula does not induce any adverse biological effects to the in vitro lung multicellular model. Brake wear particles from non-asbestos organic formulated pads, however, induced increased (pro-)inflammatory mediator release from the same in vitro system. The latter finding can be attributed to the different particle compositions, specifically the presence of anatase.
- 650 _2
- $a buňky A549 $7 D000072283
- 650 _2
- $a látky znečišťující vzduch $x toxicita $7 D000393
- 650 _2
- $a viabilita buněk $x účinky léků $7 D002470
- 650 _2
- $a kokultivační techniky $7 D018920
- 650 _2
- $a cytokiny $x metabolismus $7 D016207
- 650 _2
- $a dendritické buňky $x účinky léků $x metabolismus $x ultrastruktura $7 D003713
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a plíce $x účinky léků $x metabolismus $x patologie $7 D008168
- 650 _2
- $a makrofágy $x účinky léků $x metabolismus $x ultrastruktura $7 D008264
- 650 12
- $a biologické modely $7 D008954
- 650 _2
- $a motorová vozidla $7 D018986
- 650 _2
- $a oxidační stres $x účinky léků $7 D018384
- 650 _2
- $a velikost částic $7 D010316
- 650 _2
- $a pevné částice $x toxicita $7 D052638
- 650 _2
- $a povrchové vlastnosti $7 D013499
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Chortarea, Savvina $u BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland. Laboratory for Materials-Biology Interactions, Empa, Swiss Federal Laboratories for Materials, Science and Technology, St. Gallen, Switzerland.
- 700 1_
- $a Peikertova, Pavlina $u Nanotechnology Centre, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
- 700 1_
- $a Clift, Martin J D $u BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland. In Vitro Toxicology Group, Swansea University Medical School, Swansea, Wales, UK.
- 700 1_
- $a Petri-Fink, Alke $u BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland. Chemistry Department, University of Fribourg, Fribourg, Switzerland.
- 700 1_
- $a Kukutschova, Jana $u Nanotechnology Centre, VŠB-Technical University of Ostrava, Ostrava, Czech Republic.
- 700 1_
- $a Rothen-Rutishauser, Barbara $u BioNanomaterials Group, Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700, Fribourg, Switzerland. barbara.rothen@unifr.ch.
- 773 0_
- $w MED00009265 $t Archives of toxicology $x 1432-0738 $g Roč. 92, č. 7 (2018), s. 2339-2351
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29748788 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20200113083701 $b ABA008
- 999 __
- $a ok $b bmc $g 1483728 $s 1084132
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 92 $c 7 $d 2339-2351 $e 20180510 $i 1432-0738 $m Archives of toxicology $n Arch Toxicol $x MED00009265
- LZP __
- $a Pubmed-20200109