-
Je něco špatně v tomto záznamu ?
Sleep spindle detection using multivariate Gaussian mixture models
CR. Patti, T. Penzel, D. Cvetkovic,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29034521
DOI
10.1111/jsr.12614
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- databáze faktografické * MeSH
- dospělí MeSH
- elektroencefalografie metody MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- multivariační analýza MeSH
- normální rozdělení MeSH
- polysomnografie metody MeSH
- sběr dat metody MeSH
- shluková analýza MeSH
- spánek fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In this research study we have developed a clustering-based automatic sleep spindle detection method that was evaluated on two different databases. The databases consisted of 20 all-night polysomnograph recordings. Past detection methods have been based on subject-independent and some subject-dependent parameters, such as fixed or variable thresholds to identify spindles. Using a multivariate Gaussian mixture model clustering technique, our algorithm was developed to use only subject-specific parameters to detect spindles. We have obtained an overall sensitivity range (65.1-74.1%) at a (59.55-119.7%) false positive proportion.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19045593
- 003
- CZ-PrNML
- 005
- 20200115091516.0
- 007
- ta
- 008
- 200109s2018 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/jsr.12614 $2 doi
- 035 __
- $a (PubMed)29034521
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Patti, Chanakya Reddy $u School of Engineering, RMIT University, Melbourne, Vic., Australia.
- 245 10
- $a Sleep spindle detection using multivariate Gaussian mixture models / $c CR. Patti, T. Penzel, D. Cvetkovic,
- 520 9_
- $a In this research study we have developed a clustering-based automatic sleep spindle detection method that was evaluated on two different databases. The databases consisted of 20 all-night polysomnograph recordings. Past detection methods have been based on subject-independent and some subject-dependent parameters, such as fixed or variable thresholds to identify spindles. Using a multivariate Gaussian mixture model clustering technique, our algorithm was developed to use only subject-specific parameters to detect spindles. We have obtained an overall sensitivity range (65.1-74.1%) at a (59.55-119.7%) false positive proportion.
- 650 _2
- $a mladiství $7 D000293
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a shluková analýza $7 D016000
- 650 _2
- $a sběr dat $x metody $7 D003625
- 650 12
- $a databáze faktografické $7 D016208
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a multivariační analýza $7 D015999
- 650 _2
- $a normální rozdělení $7 D016011
- 650 _2
- $a polysomnografie $x metody $7 D017286
- 650 _2
- $a spánek $x fyziologie $7 D012890
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Penzel, Thomas $u Interdisciplinary Sleep Centre at Charite Universitaetsmedizin Berlin, Berlin, Germany. International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic.
- 700 1_
- $a Cvetkovic, Dean $u School of Engineering, RMIT University, Melbourne, Vic., Australia.
- 773 0_
- $w MED00002940 $t Journal of sleep research $x 1365-2869 $g Roč. 27, č. 4 (2018), s. e12614
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/29034521 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20200115091849 $b ABA008
- 999 __
- $a ok $b bmc $g 1483861 $s 1084266
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 27 $c 4 $d e12614 $e 20171016 $i 1365-2869 $m Journal of sleep research $n J Sleep Res $x MED00002940
- LZP __
- $a Pubmed-20200109