-
Je něco špatně v tomto záznamu ?
Compositional data analysis for physical activity, sedentary time and sleep research
D. Dumuid, TE. Stanford, JA. Martin-Fernández, Ž. Pedišić, CA. Maher, LK. Lewis, K. Hron, PT. Katzmarzyk, JP. Chaput, M. Fogelholm, G. Hu, EV. Lambert, J. Maia, OL. Sarmiento, M. Standage, TV. Barreira, ST. Broyles, C. Tudor-Locke, MS. Tremblay, T. Olds,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28555522
DOI
10.1177/0962280217710835
Knihovny.cz E-zdroje
- MeSH
- cvičení * MeSH
- dítě MeSH
- interpretace statistických dat * MeSH
- lidé MeSH
- obezita dětí a dospívajících * MeSH
- sedavý životní styl * MeSH
- spánek * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The health effects of daily activity behaviours (physical activity, sedentary time and sleep) are widely studied. While previous research has largely examined activity behaviours in isolation, recent studies have adjusted for multiple behaviours. However, the inclusion of all activity behaviours in traditional multivariate analyses has not been possible due to the perfect multicollinearity of 24-h time budget data. The ensuing lack of adjustment for known effects on the outcome undermines the validity of study findings. We describe a statistical approach that enables the inclusion of all daily activity behaviours, based on the principles of compositional data analysis. Using data from the International Study of Childhood Obesity, Lifestyle and the Environment, we demonstrate the application of compositional multiple linear regression to estimate adiposity from children's daily activity behaviours expressed as isometric log-ratio coordinates. We present a novel method for predicting change in a continuous outcome based on relative changes within a composition, and for calculating associated confidence intervals to allow for statistical inference. The compositional data analysis presented overcomes the lack of adjustment that has plagued traditional statistical methods in the field, and provides robust and reliable insights into the health effects of daily activity behaviours.
Department for Health University of Bath Bath UK
Department of Exercise Science Syracuse University Syracuse NY USA
Department of Food and Environmental Sciences Helsingin Yliopisto Helsinki Finland
Department of Human Biology University of Cape Town Cape Town South Africa
Department of Kinesiology University of Massachusetts Amherst MA USA
Dept Informàtica Matemàtica Aplicada i Estadística Universitat de Girona Girona Spain
Faculdade de Desporto Universidade do Porto Porto Portugal
Faculty of Medicine Universidad de los Andes Bogota Colombia
Institute of Sport Exercise and Active Living Victoria University Melbourne Australia
Pennington Biomedical Research Center Baton Rouge LA USA
School of Health Sciences University of South Australia Adelaide Australia
School of Mathematical Sciences University of Adelaide Adelaide Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc19045611
- 003
- CZ-PrNML
- 005
- 20200120083140.0
- 007
- ta
- 008
- 200109s2018 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1177/0962280217710835 $2 doi
- 035 __
- $a (PubMed)28555522
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Dumuid, Dorothea $u 1 School of Health Sciences, University of South Australia, Adelaide, Australia.
- 245 10
- $a Compositional data analysis for physical activity, sedentary time and sleep research / $c D. Dumuid, TE. Stanford, JA. Martin-Fernández, Ž. Pedišić, CA. Maher, LK. Lewis, K. Hron, PT. Katzmarzyk, JP. Chaput, M. Fogelholm, G. Hu, EV. Lambert, J. Maia, OL. Sarmiento, M. Standage, TV. Barreira, ST. Broyles, C. Tudor-Locke, MS. Tremblay, T. Olds,
- 520 9_
- $a The health effects of daily activity behaviours (physical activity, sedentary time and sleep) are widely studied. While previous research has largely examined activity behaviours in isolation, recent studies have adjusted for multiple behaviours. However, the inclusion of all activity behaviours in traditional multivariate analyses has not been possible due to the perfect multicollinearity of 24-h time budget data. The ensuing lack of adjustment for known effects on the outcome undermines the validity of study findings. We describe a statistical approach that enables the inclusion of all daily activity behaviours, based on the principles of compositional data analysis. Using data from the International Study of Childhood Obesity, Lifestyle and the Environment, we demonstrate the application of compositional multiple linear regression to estimate adiposity from children's daily activity behaviours expressed as isometric log-ratio coordinates. We present a novel method for predicting change in a continuous outcome based on relative changes within a composition, and for calculating associated confidence intervals to allow for statistical inference. The compositional data analysis presented overcomes the lack of adjustment that has plagued traditional statistical methods in the field, and provides robust and reliable insights into the health effects of daily activity behaviours.
- 650 _2
- $a dítě $7 D002648
- 650 12
- $a interpretace statistických dat $7 D003627
- 650 12
- $a cvičení $7 D015444
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a obezita dětí a dospívajících $7 D063766
- 650 12
- $a sedavý životní styl $7 D057185
- 650 12
- $a spánek $7 D012890
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Stanford, Tyman E $u 2 School of Mathematical Sciences, University of Adelaide, Adelaide, Australia.
- 700 1_
- $a Martin-Fernández, Josep-Antoni $u 3 Dept. Informàtica, Matemàtica Aplicada i Estadística, Universitat de Girona, Girona, Spain.
- 700 1_
- $a Pedišić, Željko $u 4 Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, Australia.
- 700 1_
- $a Maher, Carol A $u 1 School of Health Sciences, University of South Australia, Adelaide, Australia.
- 700 1_
- $a Lewis, Lucy K $u 6 Department of Mathematical Analysis and Applications of Mathematics, Univerzita Palackeho, Olomouc, Czech Republic.
- 700 1_
- $a Hron, Karel $u 6 Department of Mathematical Analysis and Applications of Mathematics, Univerzita Palackeho, Olomouc, Czech Republic.
- 700 1_
- $a Katzmarzyk, Peter T $u 7 Pennington Biomedical Research Center, Baton Rouge, LA, USA.
- 700 1_
- $a Chaput, Jean-Philippe $u 8 Healthy Active Living and Obesity Research, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada.
- 700 1_
- $a Fogelholm, Mikael $u 9 Department of Food and Environmental Sciences, Helsingin Yliopisto, Helsinki, Finland.
- 700 1_
- $a Hu, Gang $u 7 Pennington Biomedical Research Center, Baton Rouge, LA, USA.
- 700 1_
- $a Lambert, Estelle V $u 10 Department of Human Biology, University of Cape Town, Cape Town, South Africa.
- 700 1_
- $a Maia, José $u 11 Faculdade de Desporto, Universidade do Porto, Porto, Portugal.
- 700 1_
- $a Sarmiento, Olga L $u 12 Faculty of Medicine, Universidad de los Andes, Bogota, Colombia.
- 700 1_
- $a Standage, Martyn $u 13 Department for Health, University of Bath, Bath, UK.
- 700 1_
- $a Barreira, Tiago V $u 14 Department of Exercise Science, Syracuse University, Syracuse, NY, USA.
- 700 1_
- $a Broyles, Stephanie T $u 7 Pennington Biomedical Research Center, Baton Rouge, LA, USA.
- 700 1_
- $a Tudor-Locke, Catrine $u 15 Department of Kinesiology, University of Massachusetts, Amherst, MA, USA.
- 700 1_
- $a Tremblay, Mark S $u 8 Healthy Active Living and Obesity Research, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Canada.
- 700 1_
- $a Olds, Timothy $u 1 School of Health Sciences, University of South Australia, Adelaide, Australia.
- 773 0_
- $w MED00006126 $t Statistical methods in medical research $x 1477-0334 $g Roč. 27, č. 12 (2018), s. 3726-3738
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28555522 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200109 $b ABA008
- 991 __
- $a 20200120083516 $b ABA008
- 999 __
- $a ok $b bmc $g 1483879 $s 1084284
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2018 $b 27 $c 12 $d 3726-3738 $e 20170530 $i 1477-0334 $m Statistical methods in medical research $n Stat Methods Med Res $x MED00006126
- LZP __
- $a Pubmed-20200109