-
Je něco špatně v tomto záznamu ?
The tin1 gene retains the function of promoting tillering in maize
X. Zhang, Z. Lin, J. Wang, H. Liu, L. Zhou, S. Zhong, Y. Li, C. Zhu, J. Liu, Z. Lin,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2015
Free Medical Journals
od 2010
Nature Open Access
od 2010-12-01
PubMed Central
od 2012
Europe PubMed Central
od 2012
ProQuest Central
od 2010-01-01
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
Medline Complete (EBSCOhost)
od 2012-11-01
Health & Medicine (ProQuest)
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
Springer Nature OA/Free Journals
od 2010-12-01
- MeSH
- fenotyp MeSH
- genetické lokusy MeSH
- kukuřice setá genetika růst a vývoj metabolismus MeSH
- lokus kvantitativního znaku MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny genetika MeSH
- rostlinné proteiny genetika metabolismus MeSH
- vývoj rostlin genetika fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Sweet maize and popcorn retain tillering growth habit during maize diversification. However, the underlying molecular genetic mechanism remains unknown. Here, we show that the retention of maize tillering is controlled by a major quantitative trait locus (QTL), tin1, which encodes a C2H2-zinc-finger transcription factor that acts independently of tb1. In sweet maize, a splice-site variant from G/GT to C/GT leads to intron retention, which enhances tin1 transcript levels and consequently increases tiller number. Comparative genomics analysis and DNA diversity analysis reveal that tin1 is under parallel selection across different cereal species. tin1 is involved in multiple pathways, directly represses two tiller-related genes, gt1 and Laba1/An-2, and interacts with three TOPLESS proteins to regulate the outgrowth of tiller buds. Our results support that maize tin1, derived from a standing variation in wild progenitor teosinte population, determines tillering retention during maize diversification.
Center for Crop Functional Genomics and Molecular Breeding
Joint Laboratory for International Cooperation in Crop Molecular Breeding Ministry of Education
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20005637
- 003
- CZ-PrNML
- 005
- 20200518132008.0
- 007
- ta
- 008
- 200511s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41467-019-13425-6 $2 doi
- 035 __
- $a (PubMed)31811145
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Zhang, Xuan $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
- 245 14
- $a The tin1 gene retains the function of promoting tillering in maize / $c X. Zhang, Z. Lin, J. Wang, H. Liu, L. Zhou, S. Zhong, Y. Li, C. Zhu, J. Liu, Z. Lin,
- 520 9_
- $a Sweet maize and popcorn retain tillering growth habit during maize diversification. However, the underlying molecular genetic mechanism remains unknown. Here, we show that the retention of maize tillering is controlled by a major quantitative trait locus (QTL), tin1, which encodes a C2H2-zinc-finger transcription factor that acts independently of tb1. In sweet maize, a splice-site variant from G/GT to C/GT leads to intron retention, which enhances tin1 transcript levels and consequently increases tiller number. Comparative genomics analysis and DNA diversity analysis reveal that tin1 is under parallel selection across different cereal species. tin1 is involved in multiple pathways, directly represses two tiller-related genes, gt1 and Laba1/An-2, and interacts with three TOPLESS proteins to regulate the outgrowth of tiller buds. Our results support that maize tin1, derived from a standing variation in wild progenitor teosinte population, determines tillering retention during maize diversification.
- 650 _2
- $a regulace genové exprese u rostlin $7 D018506
- 650 _2
- $a rostlinné geny $x genetika $7 D017343
- 650 _2
- $a genetické lokusy $7 D056426
- 650 _2
- $a fenotyp $7 D010641
- 650 _2
- $a vývoj rostlin $x genetika $x fyziologie $7 D063245
- 650 _2
- $a rostlinné proteiny $x genetika $x metabolismus $7 D010940
- 650 _2
- $a lokus kvantitativního znaku $7 D040641
- 650 _2
- $a kukuřice setá $x genetika $x růst a vývoj $x metabolismus $7 D003313
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lin, Zhelong $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
- 700 1_
- $a Wang, Jian $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
- 700 1_
- $a Liu, Hangqin $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
- 700 1_
- $a Zhou, Leina $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
- 700 1_
- $a Zhong, Shuyang $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
- 700 1_
- $a Li, Yan $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
- 700 1_
- $a Zhu, Can $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
- 700 1_
- $a Liu, Jiacheng $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
- 700 1_
- $a Lin, Zhongwei $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China. zlin@cau.edu.cn.
- 773 0_
- $w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 10, č. 1 (2019), s. 5608
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31811145 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200518132008 $b ABA008
- 999 __
- $a ok $b bmc $g 1524495 $s 1095693
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 10 $c 1 $d 5608 $e 20191206 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
- LZP __
- $a Pubmed-20200511