Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

The tin1 gene retains the function of promoting tillering in maize

X. Zhang, Z. Lin, J. Wang, H. Liu, L. Zhou, S. Zhong, Y. Li, C. Zhu, J. Liu, Z. Lin,

. 2019 ; 10 (1) : 5608. [pub] 20191206

Language English Country Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

Sweet maize and popcorn retain tillering growth habit during maize diversification. However, the underlying molecular genetic mechanism remains unknown. Here, we show that the retention of maize tillering is controlled by a major quantitative trait locus (QTL), tin1, which encodes a C2H2-zinc-finger transcription factor that acts independently of tb1. In sweet maize, a splice-site variant from G/GT to C/GT leads to intron retention, which enhances tin1 transcript levels and consequently increases tiller number. Comparative genomics analysis and DNA diversity analysis reveal that tin1 is under parallel selection across different cereal species. tin1 is involved in multiple pathways, directly represses two tiller-related genes, gt1 and Laba1/An-2, and interacts with three TOPLESS proteins to regulate the outgrowth of tiller buds. Our results support that maize tin1, derived from a standing variation in wild progenitor teosinte population, determines tillering retention during maize diversification.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20005637
003      
CZ-PrNML
005      
20200518132008.0
007      
ta
008      
200511s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41467-019-13425-6 $2 doi
035    __
$a (PubMed)31811145
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Zhang, Xuan $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
245    14
$a The tin1 gene retains the function of promoting tillering in maize / $c X. Zhang, Z. Lin, J. Wang, H. Liu, L. Zhou, S. Zhong, Y. Li, C. Zhu, J. Liu, Z. Lin,
520    9_
$a Sweet maize and popcorn retain tillering growth habit during maize diversification. However, the underlying molecular genetic mechanism remains unknown. Here, we show that the retention of maize tillering is controlled by a major quantitative trait locus (QTL), tin1, which encodes a C2H2-zinc-finger transcription factor that acts independently of tb1. In sweet maize, a splice-site variant from G/GT to C/GT leads to intron retention, which enhances tin1 transcript levels and consequently increases tiller number. Comparative genomics analysis and DNA diversity analysis reveal that tin1 is under parallel selection across different cereal species. tin1 is involved in multiple pathways, directly represses two tiller-related genes, gt1 and Laba1/An-2, and interacts with three TOPLESS proteins to regulate the outgrowth of tiller buds. Our results support that maize tin1, derived from a standing variation in wild progenitor teosinte population, determines tillering retention during maize diversification.
650    _2
$a regulace genové exprese u rostlin $7 D018506
650    _2
$a rostlinné geny $x genetika $7 D017343
650    _2
$a genetické lokusy $7 D056426
650    _2
$a fenotyp $7 D010641
650    _2
$a vývoj rostlin $x genetika $x fyziologie $7 D063245
650    _2
$a rostlinné proteiny $x genetika $x metabolismus $7 D010940
650    _2
$a lokus kvantitativního znaku $7 D040641
650    _2
$a kukuřice setá $x genetika $x růst a vývoj $x metabolismus $7 D003313
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lin, Zhelong $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
700    1_
$a Wang, Jian $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
700    1_
$a Liu, Hangqin $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
700    1_
$a Zhou, Leina $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
700    1_
$a Zhong, Shuyang $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
700    1_
$a Li, Yan $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
700    1_
$a Zhu, Can $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
700    1_
$a Liu, Jiacheng $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China.
700    1_
$a Lin, Zhongwei $u National Maize Improvement Center; Center for Crop Functional Genomics and Molecular Breeding; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education; Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, China Agricultural University, Beijing, 100193, China. zlin@cau.edu.cn.
773    0_
$w MED00184850 $t Nature communications $x 2041-1723 $g Roč. 10, č. 1 (2019), s. 5608
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31811145 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200518132008 $b ABA008
999    __
$a ok $b bmc $g 1524495 $s 1095693
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 10 $c 1 $d 5608 $e 20191206 $i 2041-1723 $m Nature communications $n Nat Commun $x MED00184850
LZP    __
$a Pubmed-20200511

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...