Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion

A. Karnkowska, SC. Treitli, O. Brzoň, L. Novák, V. Vacek, P. Soukal, LD. Barlow, EK. Herman, SV. Pipaliya, T. Pánek, D. Žihala, R. Petrželková, A. Butenko, L. Eme, CW. Stairs, AJ. Roger, M. Eliáš, JB. Dacks, V. Hampl,

. 2019 ; 36 (10) : 2292-2312. [pub] 20191001

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006066

The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006066
003      
CZ-PrNML
005      
20200525151758.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1093/molbev/msz147 $2 doi
035    __
$a (PubMed)31387118
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Karnkowska, Anna $u Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic. Department of Molecular Phylogenetics and Evolution, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland.
245    14
$a The Oxymonad Genome Displays Canonical Eukaryotic Complexity in the Absence of a Mitochondrion / $c A. Karnkowska, SC. Treitli, O. Brzoň, L. Novák, V. Vacek, P. Soukal, LD. Barlow, EK. Herman, SV. Pipaliya, T. Pánek, D. Žihala, R. Petrželková, A. Butenko, L. Eme, CW. Stairs, AJ. Roger, M. Eliáš, JB. Dacks, V. Hampl,
520    9_
$a The discovery that the protist Monocercomonoides exilis completely lacks mitochondria demonstrates that these organelles are not absolutely essential to eukaryotic cells. However, the degree to which the metabolism and cellular systems of this organism have adapted to the loss of mitochondria is unknown. Here, we report an extensive analysis of the M. exilis genome to address this question. Unexpectedly, we find that M. exilis genome structure and content is similar in complexity to other eukaryotes and less "reduced" than genomes of some other protists from the Metamonada group to which it belongs. Furthermore, the predicted cytoskeletal systems, the organization of endomembrane systems, and biosynthetic pathways also display canonical eukaryotic complexity. The only apparent preadaptation that permitted the loss of mitochondria was the acquisition of the SUF system for Fe-S cluster assembly and the loss of glycine cleavage system. Changes in other systems, including in amino acid metabolism and oxidative stress response, were coincident with the loss of mitochondria but are likely adaptations to the microaerophilic and endobiotic niche rather than the mitochondrial loss per se. Apart from the lack of mitochondria and peroxisomes, we show that M. exilis is a fully elaborated eukaryotic cell that is a promising model system in which eukaryotic cell biology can be investigated in the absence of mitochondria.
650    _2
$a mikrofilamenta $7 D008841
650    12
$a genom protozoální $7 D018503
650    12
$a intracelulární membrány $7 D007425
650    _2
$a introny $7 D007438
650    _2
$a mitochondriální dynamika $7 D063154
650    _2
$a Oxymonadida $x enzymologie $x genetika $x ultrastruktura $7 D056899
650    _2
$a proteom $7 D020543
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Treitli, Sebastian C $u Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
700    1_
$a Brzoň, Ondřej $u Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
700    1_
$a Novák, Lukáš $u Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
700    1_
$a Vacek, Vojtěch $u Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
700    1_
$a Soukal, Petr $u Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
700    1_
$a Barlow, Lael D $u Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada.
700    1_
$a Herman, Emily K $u Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada.
700    1_
$a Pipaliya, Shweta V $u Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada.
700    1_
$a Pánek, Tomáš $u Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Žihala, David $u Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Petrželková, Romana $u Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Butenko, Anzhelika $u Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Eme, Laura $u Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada. Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
700    1_
$a Stairs, Courtney W $u Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada. Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
700    1_
$a Roger, Andrew J $u Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.
700    1_
$a Eliáš, Marek $u Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic. Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Dacks, Joel B $u Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada.
700    1_
$a Hampl, Vladimír $u Department of Parasitology, BIOCEV, Faculty of Science, Charles University, Vestec, Czech Republic.
773    0_
$w MED00006601 $t Molecular biology and evolution $x 1537-1719 $g Roč. 36, č. 10 (2019), s. 2292-2312
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31387118 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200525151758 $b ABA008
999    __
$a ok $b bmc $g 1524924 $s 1096122
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 36 $c 10 $d 2292-2312 $e 20191001 $i 1537-1719 $m Molecular biology and evolution $n Mol Biol Evol $x MED00006601
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...