-
Je něco špatně v tomto záznamu ?
Blind deconvolution estimation of an arterial input function for small animal DCE-MRI
R. Jiřík, T. Taxt, O. Macíček, M. Bartoš, J. Kratochvíla, K. Souček, E. Dražanová, L. Krátká, A. Hampl, Z. Starčuk,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- algoritmy MeSH
- arterie diagnostické zobrazování MeSH
- farmakokinetika MeSH
- kontrastní látky farmakokinetika MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nekróza patologie MeSH
- perfuze MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu metody MeSH
- poměr signál - šum MeSH
- regresní analýza MeSH
- reprodukovatelnost výsledků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PURPOSE: One of the main obstacles for reliable quantitative dynamic contrast-enhanced (DCE) MRI is the need for accurate knowledge of the arterial input function (AIF). This is a special challenge for preclinical small animal applications where it is very difficult to measure the AIF without partial volume and flow artifacts. Furthermore, using advanced pharmacokinetic models (allowing estimation of blood flow and permeability-surface area product in addition to the classical perfusion parameters) poses stricter requirements on the accuracy and precision of AIF estimation. This paper addresses small animal DCE-MRI with advanced pharmacokinetic models and presents a method for estimation of the AIF based on blind deconvolution. METHODS: A parametric AIF model designed for small animal physiology and use of advanced pharmacokinetic models is proposed. The parameters of the AIF are estimated using multichannel blind deconvolution. RESULTS: Evaluation on simulated data show that for realistic signal to noise ratios blind deconvolution AIF estimation leads to comparable results as the use of the true AIF. Evaluation on real data based on DCE-MRI with two contrast agents of different molecular weights showed a consistence with the known effects of the molecular weight. CONCLUSION: Multi-channel blind deconvolution using the proposed AIF model specific for small animal DCE-MRI provides reliable perfusion parameter estimates under realistic signal to noise conditions.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20006300
- 003
- CZ-PrNML
- 005
- 20200527090831.0
- 007
- ta
- 008
- 200511s2019 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.mri.2019.05.024 $2 doi
- 035 __
- $a (PubMed)31150814
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Jiřík, Radovan $u Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic. Electronic address: jirik@isibrno.cz.
- 245 10
- $a Blind deconvolution estimation of an arterial input function for small animal DCE-MRI / $c R. Jiřík, T. Taxt, O. Macíček, M. Bartoš, J. Kratochvíla, K. Souček, E. Dražanová, L. Krátká, A. Hampl, Z. Starčuk,
- 520 9_
- $a PURPOSE: One of the main obstacles for reliable quantitative dynamic contrast-enhanced (DCE) MRI is the need for accurate knowledge of the arterial input function (AIF). This is a special challenge for preclinical small animal applications where it is very difficult to measure the AIF without partial volume and flow artifacts. Furthermore, using advanced pharmacokinetic models (allowing estimation of blood flow and permeability-surface area product in addition to the classical perfusion parameters) poses stricter requirements on the accuracy and precision of AIF estimation. This paper addresses small animal DCE-MRI with advanced pharmacokinetic models and presents a method for estimation of the AIF based on blind deconvolution. METHODS: A parametric AIF model designed for small animal physiology and use of advanced pharmacokinetic models is proposed. The parameters of the AIF are estimated using multichannel blind deconvolution. RESULTS: Evaluation on simulated data show that for realistic signal to noise ratios blind deconvolution AIF estimation leads to comparable results as the use of the true AIF. Evaluation on real data based on DCE-MRI with two contrast agents of different molecular weights showed a consistence with the known effects of the molecular weight. CONCLUSION: Multi-channel blind deconvolution using the proposed AIF model specific for small animal DCE-MRI provides reliable perfusion parameter estimates under realistic signal to noise conditions.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a arterie $x diagnostické zobrazování $7 D001158
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a kontrastní látky $x farmakokinetika $7 D003287
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $x metody $7 D007091
- 650 12
- $a magnetická rezonanční tomografie $7 D008279
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední BALB C $7 D008807
- 650 _2
- $a nekróza $x patologie $7 D009336
- 650 _2
- $a perfuze $7 D010477
- 650 _2
- $a farmakokinetika $7 D010599
- 650 _2
- $a regresní analýza $7 D012044
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a poměr signál - šum $7 D059629
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Taxt, Torfinn $u Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
- 700 1_
- $a Macíček, Ondřej $u Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
- 700 1_
- $a Bartoš, Michal $u Institute of Information Theory and Automation of the Czech Academy of Sciences, Pod Vodarenskou vezi 4, 18208 Praha, Czech Republic.
- 700 1_
- $a Kratochvíla, Jiří $u Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
- 700 1_
- $a Souček, Karel $u Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265 Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
- 700 1_
- $a Dražanová, Eva $u Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
- 700 1_
- $a Krátká, Lucie $u Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
- 700 1_
- $a Hampl, Aleš $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500 Brno, Czech Republic.
- 700 1_
- $a Starčuk, Zenon $u Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
- 773 0_
- $w MED00003171 $t Magnetic resonance imaging $x 1873-5894 $g Roč. 62, č. - (2019), s. 46-56
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31150814 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200527090828 $b ABA008
- 999 __
- $a ok $b bmc $g 1525158 $s 1096356
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 62 $c - $d 46-56 $e 20190528 $i 1873-5894 $m Magnetic resonance imaging $n Magn Reson Imaging $x MED00003171
- LZP __
- $a Pubmed-20200511