• Je něco špatně v tomto záznamu ?

Blind deconvolution estimation of an arterial input function for small animal DCE-MRI

R. Jiřík, T. Taxt, O. Macíček, M. Bartoš, J. Kratochvíla, K. Souček, E. Dražanová, L. Krátká, A. Hampl, Z. Starčuk,

. 2019 ; 62 (-) : 46-56. [pub] 20190528

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006300

PURPOSE: One of the main obstacles for reliable quantitative dynamic contrast-enhanced (DCE) MRI is the need for accurate knowledge of the arterial input function (AIF). This is a special challenge for preclinical small animal applications where it is very difficult to measure the AIF without partial volume and flow artifacts. Furthermore, using advanced pharmacokinetic models (allowing estimation of blood flow and permeability-surface area product in addition to the classical perfusion parameters) poses stricter requirements on the accuracy and precision of AIF estimation. This paper addresses small animal DCE-MRI with advanced pharmacokinetic models and presents a method for estimation of the AIF based on blind deconvolution. METHODS: A parametric AIF model designed for small animal physiology and use of advanced pharmacokinetic models is proposed. The parameters of the AIF are estimated using multichannel blind deconvolution. RESULTS: Evaluation on simulated data show that for realistic signal to noise ratios blind deconvolution AIF estimation leads to comparable results as the use of the true AIF. Evaluation on real data based on DCE-MRI with two contrast agents of different molecular weights showed a consistence with the known effects of the molecular weight. CONCLUSION: Multi-channel blind deconvolution using the proposed AIF model specific for small animal DCE-MRI provides reliable perfusion parameter estimates under realistic signal to noise conditions.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006300
003      
CZ-PrNML
005      
20200527090831.0
007      
ta
008      
200511s2019 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.mri.2019.05.024 $2 doi
035    __
$a (PubMed)31150814
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Jiřík, Radovan $u Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic. Electronic address: jirik@isibrno.cz.
245    10
$a Blind deconvolution estimation of an arterial input function for small animal DCE-MRI / $c R. Jiřík, T. Taxt, O. Macíček, M. Bartoš, J. Kratochvíla, K. Souček, E. Dražanová, L. Krátká, A. Hampl, Z. Starčuk,
520    9_
$a PURPOSE: One of the main obstacles for reliable quantitative dynamic contrast-enhanced (DCE) MRI is the need for accurate knowledge of the arterial input function (AIF). This is a special challenge for preclinical small animal applications where it is very difficult to measure the AIF without partial volume and flow artifacts. Furthermore, using advanced pharmacokinetic models (allowing estimation of blood flow and permeability-surface area product in addition to the classical perfusion parameters) poses stricter requirements on the accuracy and precision of AIF estimation. This paper addresses small animal DCE-MRI with advanced pharmacokinetic models and presents a method for estimation of the AIF based on blind deconvolution. METHODS: A parametric AIF model designed for small animal physiology and use of advanced pharmacokinetic models is proposed. The parameters of the AIF are estimated using multichannel blind deconvolution. RESULTS: Evaluation on simulated data show that for realistic signal to noise ratios blind deconvolution AIF estimation leads to comparable results as the use of the true AIF. Evaluation on real data based on DCE-MRI with two contrast agents of different molecular weights showed a consistence with the known effects of the molecular weight. CONCLUSION: Multi-channel blind deconvolution using the proposed AIF model specific for small animal DCE-MRI provides reliable perfusion parameter estimates under realistic signal to noise conditions.
650    _2
$a algoritmy $7 D000465
650    _2
$a zvířata $7 D000818
650    _2
$a arterie $x diagnostické zobrazování $7 D001158
650    _2
$a počítačová simulace $7 D003198
650    _2
$a kontrastní látky $x farmakokinetika $7 D003287
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $x metody $7 D007091
650    12
$a magnetická rezonanční tomografie $7 D008279
650    _2
$a myši $7 D051379
650    _2
$a myši inbrední BALB C $7 D008807
650    _2
$a nekróza $x patologie $7 D009336
650    _2
$a perfuze $7 D010477
650    _2
$a farmakokinetika $7 D010599
650    _2
$a regresní analýza $7 D012044
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a poměr signál - šum $7 D059629
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Taxt, Torfinn $u Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
700    1_
$a Macíček, Ondřej $u Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
700    1_
$a Bartoš, Michal $u Institute of Information Theory and Automation of the Czech Academy of Sciences, Pod Vodarenskou vezi 4, 18208 Praha, Czech Republic.
700    1_
$a Kratochvíla, Jiří $u Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
700    1_
$a Souček, Karel $u Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 61265 Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Pekarska 53, 65691 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
700    1_
$a Dražanová, Eva $u Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
700    1_
$a Krátká, Lucie $u Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
700    1_
$a Hampl, Aleš $u Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Kamenice 3, 62500 Brno, Czech Republic.
700    1_
$a Starčuk, Zenon $u Institute of Scientific Instruments of the Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
773    0_
$w MED00003171 $t Magnetic resonance imaging $x 1873-5894 $g Roč. 62, č. - (2019), s. 46-56
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31150814 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200527090828 $b ABA008
999    __
$a ok $b bmc $g 1525158 $s 1096356
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 62 $c - $d 46-56 $e 20190528 $i 1873-5894 $m Magnetic resonance imaging $n Magn Reson Imaging $x MED00003171
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace