• Je něco špatně v tomto záznamu ?

Retinal oximetry: Metabolic imaging for diseases of the retina and brain

E. Stefánsson, OB. Olafsdottir, TS. Eliasdottir, W. Vehmeijer, AB. Einarsdottir, T. Bek, TL. Torp, J. Grauslund, T. Eysteinsson, RA. Karlsson, K. Van Keer, I. Stalmans, E. Vandewalle, MG. Todorova, M. Hammer, G. Garhöfer, L. Schmetterer, M. Šín,...

. 2019 ; 70 (-) : 1-22. [pub] 20190415

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006445

Retinal oximetry imaging of retinal blood vessels measures oxygen saturation of hemoglobin. The imaging technology is non-invasive and reproducible with remarkably low variability on test-retest studies and in healthy cohorts. Pathophysiological principles and novel biomarkers in several retinal diseases have been discovered, as well as possible applications for systemic and brain disease. In diabetic retinopathy, retinal venous oxygen saturation is elevated and arteriovenous difference progressively reduced in advanced stages of retinopathy compared with healthy persons. This correlates with pathophysiology of diabetic retinopathy where hypoxia stimulates VEGF production. Laser treatment and vitrectomy both improve retinal oximetry values, which correlate with clinical outcome. The oximetry biomarker may allow automatic measurement of severity of diabetic retinopathy and predict its response to treatment. Central retinal vein occlusion is characterized by retinal hypoxia, which is evident in retinal oximetry. The retinal hypoxia seen on oximetry correlates with the extent of peripheral ischemia, visual acuity and thickness of macular edema. This biomarker may help diagnose and measure severity of vein occlusion and degree of retinal ischemia. Glaucomatous retinal atrophy is associated with reduced oxygen consumption resulting in reduced arteriovenous difference and higher retinal venous saturation. The oximetry findings correlate with worse visual field, thinner nerve fiber layer and smaller optic disc rim. This provides an objective biomarker for glaucomatous damage. In retinitis pigmentosa, an association exists between advanced atrophy, worse visual field and higher retinal venous oxygen saturation, lower arteriovenous difference. This biomarker may allow measurement of severity and progression of retinitis pigmentosa and other atrophic retinal diseases. Retinal oximetry offers visible light imaging of systemic and central nervous system vessels. It senses hypoxia in cardiac and pulmonary diseases. Oximetry biomarkers have been discovered in Alzheimer's disease and multiple sclerosis and oxygen levels in the retina correspond well with brain.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006445
003      
CZ-PrNML
005      
20200526152055.0
007      
ta
008      
200511s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.preteyeres.2019.04.001 $2 doi
035    __
$a (PubMed)30999027
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Stefánsson, Einar $u University of Iceland, Reykjavik, Iceland; Landspitali, University Hospital, Reykjavik, Iceland; Oxymap ehf, Reykjavik, Iceland. Electronic address: einarste@landspitali.is.
245    10
$a Retinal oximetry: Metabolic imaging for diseases of the retina and brain / $c E. Stefánsson, OB. Olafsdottir, TS. Eliasdottir, W. Vehmeijer, AB. Einarsdottir, T. Bek, TL. Torp, J. Grauslund, T. Eysteinsson, RA. Karlsson, K. Van Keer, I. Stalmans, E. Vandewalle, MG. Todorova, M. Hammer, G. Garhöfer, L. Schmetterer, M. Šín, SH. Hardarson,
520    9_
$a Retinal oximetry imaging of retinal blood vessels measures oxygen saturation of hemoglobin. The imaging technology is non-invasive and reproducible with remarkably low variability on test-retest studies and in healthy cohorts. Pathophysiological principles and novel biomarkers in several retinal diseases have been discovered, as well as possible applications for systemic and brain disease. In diabetic retinopathy, retinal venous oxygen saturation is elevated and arteriovenous difference progressively reduced in advanced stages of retinopathy compared with healthy persons. This correlates with pathophysiology of diabetic retinopathy where hypoxia stimulates VEGF production. Laser treatment and vitrectomy both improve retinal oximetry values, which correlate with clinical outcome. The oximetry biomarker may allow automatic measurement of severity of diabetic retinopathy and predict its response to treatment. Central retinal vein occlusion is characterized by retinal hypoxia, which is evident in retinal oximetry. The retinal hypoxia seen on oximetry correlates with the extent of peripheral ischemia, visual acuity and thickness of macular edema. This biomarker may help diagnose and measure severity of vein occlusion and degree of retinal ischemia. Glaucomatous retinal atrophy is associated with reduced oxygen consumption resulting in reduced arteriovenous difference and higher retinal venous saturation. The oximetry findings correlate with worse visual field, thinner nerve fiber layer and smaller optic disc rim. This provides an objective biomarker for glaucomatous damage. In retinitis pigmentosa, an association exists between advanced atrophy, worse visual field and higher retinal venous oxygen saturation, lower arteriovenous difference. This biomarker may allow measurement of severity and progression of retinitis pigmentosa and other atrophic retinal diseases. Retinal oximetry offers visible light imaging of systemic and central nervous system vessels. It senses hypoxia in cardiac and pulmonary diseases. Oximetry biomarkers have been discovered in Alzheimer's disease and multiple sclerosis and oxygen levels in the retina correspond well with brain.
650    _2
$a nemoci mozku $x diagnostické zobrazování $x patofyziologie $7 D001927
650    _2
$a mozkový krevní oběh $x fyziologie $7 D002560
650    _2
$a lidé $7 D006801
650    12
$a oxymetrie $7 D010092
650    _2
$a kyslík $x krev $7 D010100
650    _2
$a nemoci retiny $x diagnostické zobrazování $x patofyziologie $7 D012164
650    _2
$a retinální cévy $x patofyziologie $7 D012171
650    _2
$a zraková ostrost $7 D014792
650    _2
$a zraková pole $7 D014794
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Olafsdottir, Olof Birna $u University of Iceland, Reykjavik, Iceland; Landspitali, University Hospital, Reykjavik, Iceland.
700    1_
$a Eliasdottir, Thorunn S $u University of Iceland, Reykjavik, Iceland; Landspitali, University Hospital, Reykjavik, Iceland.
700    1_
$a Vehmeijer, Wouter $u Leiden University, Leiden, the Netherlands.
700    1_
$a Einarsdottir, Anna Bryndis $u University of Iceland, Reykjavik, Iceland; Odense University Hospital, Odense, Denmark; University of Southern Denmark, Odense, Denmark.
700    1_
$a Bek, Toke $u Aarhus University Hospital, Aarhus, Denmark.
700    1_
$a Torp, Thomas Lee $u Odense University Hospital, Odense, Denmark; University of Southern Denmark, Odense, Denmark.
700    1_
$a Grauslund, Jakob $u Odense University Hospital, Odense, Denmark; University of Southern Denmark, Odense, Denmark.
700    1_
$a Eysteinsson, Thor $u University of Iceland, Reykjavik, Iceland; Landspitali, University Hospital, Reykjavik, Iceland.
700    1_
$a Karlsson, Robert Arnar $u University of Iceland, Reykjavik, Iceland; Oxymap ehf, Reykjavik, Iceland.
700    1_
$a Van Keer, Karel $u University of Leuven, Leuven, Belgium.
700    1_
$a Stalmans, Ingeborg $u University of Leuven, Leuven, Belgium.
700    1_
$a Vandewalle, Evelien $u University of Leuven, Leuven, Belgium.
700    1_
$a Todorova, Margarita G $u University of Basel, Department of Ophthalmology, Basel, Switzerland; Cantonal Hospital St.Gallen, Department of Ophthalmology, St. Gallen, Switzerland.
700    1_
$a Hammer, Martin $u Universitätsklinikum Jena, Germany.
700    1_
$a Garhöfer, Gerhard $u Department of Clinical Pharmacology, Medical University of Vienna, Austria.
700    1_
$a Schmetterer, Leopold $u Singapore Eye Research Institute, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria.
700    1_
$a Šín, Martin $u Department of Ophthalmology, University Hospital and Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
700    1_
$a Hardarson, Sveinn Hakon $u University of Iceland, Reykjavik, Iceland.
773    0_
$w MED00008657 $t Progress in retinal and eye research $x 1873-1635 $g Roč. 70, č. - (2019), s. 1-22
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30999027 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200526152051 $b ABA008
999    __
$a ok $b bmc $g 1525303 $s 1096501
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 70 $c - $d 1-22 $e 20190415 $i 1873-1635 $m Progress in retinal and eye research $n Prog Retin Eye Res $x MED00008657
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...