-
Je něco špatně v tomto záznamu ?
Bifurcation manifolds in predator-prey models computed by Gröbner basis method
V. Hajnová, L. Přibylová,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- potravní řetězec * MeSH
- teoretické modely * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Many natural processes studied in population biology, systems biology, biochemistry, chemistry or physics are modeled by dynamical systems with polynomial or rational right-hand sides in state and parameter variables. The problem of finding bifurcation manifolds of such discrete or continuous dynamical systems leads to a problem of finding solutions to a system of non-linear algebraic equations. This approach often fails since it is not possible to express equilibria explicitly. Here we describe an algebraic procedure based on the Gröbner basis computation that finds bifurcation manifolds without computing equilibria. Our method provides formulas for bifurcation manifolds in commonly studied cases in applied research - for the fold, transcritical, cusp, Hopf and Bogdanov-Takens bifurcations. The method returns bifurcation manifolds as implicitly defined functions or parametric functions in full parameter space. The approach can be implemented in any computer algebra system; therefore it can be used in applied research as a supporting autonomous computation even by non-experts in bifurcation theory. This paper demonstrates our new approach on the recently published Rosenzweig-MacArthur predator-prey model generalizations in order to highlight the simplicity of our method compared to the published analysis.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20006485
- 003
- CZ-PrNML
- 005
- 20200527103307.0
- 007
- ta
- 008
- 200511s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.mbs.2019.03.008 $2 doi
- 035 __
- $a (PubMed)30946845
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Hajnová, Veronika $u Department of Mathematics and Statistics, Section of Applied Mathematics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czechia. Electronic address: xhajnovav@math.muni.cz.
- 245 10
- $a Bifurcation manifolds in predator-prey models computed by Gröbner basis method / $c V. Hajnová, L. Přibylová,
- 520 9_
- $a Many natural processes studied in population biology, systems biology, biochemistry, chemistry or physics are modeled by dynamical systems with polynomial or rational right-hand sides in state and parameter variables. The problem of finding bifurcation manifolds of such discrete or continuous dynamical systems leads to a problem of finding solutions to a system of non-linear algebraic equations. This approach often fails since it is not possible to express equilibria explicitly. Here we describe an algebraic procedure based on the Gröbner basis computation that finds bifurcation manifolds without computing equilibria. Our method provides formulas for bifurcation manifolds in commonly studied cases in applied research - for the fold, transcritical, cusp, Hopf and Bogdanov-Takens bifurcations. The method returns bifurcation manifolds as implicitly defined functions or parametric functions in full parameter space. The approach can be implemented in any computer algebra system; therefore it can be used in applied research as a supporting autonomous computation even by non-experts in bifurcation theory. This paper demonstrates our new approach on the recently published Rosenzweig-MacArthur predator-prey model generalizations in order to highlight the simplicity of our method compared to the published analysis.
- 650 12
- $a potravní řetězec $7 D020387
- 650 12
- $a teoretické modely $7 D008962
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Přibylová, Lenka $u Department of Mathematics and Statistics, Section of Applied Mathematics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czechia.
- 773 0_
- $w MED00003200 $t Mathematical biosciences $x 1879-3134 $g Roč. 312, č. - (2019), s. 1-7
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30946845 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200511 $b ABA008
- 991 __
- $a 20200527103304 $b ABA008
- 999 __
- $a ok $b bmc $g 1525343 $s 1096541
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 312 $c - $d 1-7 $e 20190401 $i 1879-3134 $m Mathematical biosciences $n Math Biosci $x MED00003200
- LZP __
- $a Pubmed-20200511