• Je něco špatně v tomto záznamu ?

Bifurcation manifolds in predator-prey models computed by Gröbner basis method

V. Hajnová, L. Přibylová,

. 2019 ; 312 (-) : 1-7. [pub] 20190401

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006485

Many natural processes studied in population biology, systems biology, biochemistry, chemistry or physics are modeled by dynamical systems with polynomial or rational right-hand sides in state and parameter variables. The problem of finding bifurcation manifolds of such discrete or continuous dynamical systems leads to a problem of finding solutions to a system of non-linear algebraic equations. This approach often fails since it is not possible to express equilibria explicitly. Here we describe an algebraic procedure based on the Gröbner basis computation that finds bifurcation manifolds without computing equilibria. Our method provides formulas for bifurcation manifolds in commonly studied cases in applied research - for the fold, transcritical, cusp, Hopf and Bogdanov-Takens bifurcations. The method returns bifurcation manifolds as implicitly defined functions or parametric functions in full parameter space. The approach can be implemented in any computer algebra system; therefore it can be used in applied research as a supporting autonomous computation even by non-experts in bifurcation theory. This paper demonstrates our new approach on the recently published Rosenzweig-MacArthur predator-prey model generalizations in order to highlight the simplicity of our method compared to the published analysis.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006485
003      
CZ-PrNML
005      
20200527103307.0
007      
ta
008      
200511s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.mbs.2019.03.008 $2 doi
035    __
$a (PubMed)30946845
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Hajnová, Veronika $u Department of Mathematics and Statistics, Section of Applied Mathematics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czechia. Electronic address: xhajnovav@math.muni.cz.
245    10
$a Bifurcation manifolds in predator-prey models computed by Gröbner basis method / $c V. Hajnová, L. Přibylová,
520    9_
$a Many natural processes studied in population biology, systems biology, biochemistry, chemistry or physics are modeled by dynamical systems with polynomial or rational right-hand sides in state and parameter variables. The problem of finding bifurcation manifolds of such discrete or continuous dynamical systems leads to a problem of finding solutions to a system of non-linear algebraic equations. This approach often fails since it is not possible to express equilibria explicitly. Here we describe an algebraic procedure based on the Gröbner basis computation that finds bifurcation manifolds without computing equilibria. Our method provides formulas for bifurcation manifolds in commonly studied cases in applied research - for the fold, transcritical, cusp, Hopf and Bogdanov-Takens bifurcations. The method returns bifurcation manifolds as implicitly defined functions or parametric functions in full parameter space. The approach can be implemented in any computer algebra system; therefore it can be used in applied research as a supporting autonomous computation even by non-experts in bifurcation theory. This paper demonstrates our new approach on the recently published Rosenzweig-MacArthur predator-prey model generalizations in order to highlight the simplicity of our method compared to the published analysis.
650    12
$a potravní řetězec $7 D020387
650    12
$a teoretické modely $7 D008962
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Přibylová, Lenka $u Department of Mathematics and Statistics, Section of Applied Mathematics, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czechia.
773    0_
$w MED00003200 $t Mathematical biosciences $x 1879-3134 $g Roč. 312, č. - (2019), s. 1-7
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30946845 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200527103304 $b ABA008
999    __
$a ok $b bmc $g 1525343 $s 1096541
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 312 $c - $d 1-7 $e 20190401 $i 1879-3134 $m Mathematical biosciences $n Math Biosci $x MED00003200
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...