Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Neuronal KIF5b deletion induces striatum-dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors

LE. Cromberg, TMM. Saez, MG. Otero, E. Tomasella, M. Alloatti, A. Damianich, V. Pozo Devoto, J. Ferrario, D. Gelman, M. Rubinstein, TL. Falzone,

. 2019 ; 149 (3) : 362-380. [pub] 20190214

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006633

The process of locomotion is controlled by fine-tuned dopaminergic neurons in the Substantia Nigra pars-compacta (SNpc) that projects their axons to the dorsal striatum regulating cortical innervations of medium spiny neurons. Dysfunction in dopaminergic neurotransmission within the striatum leads to movement impairments, gaiting defects, and hypo-locomotion. Due to their high polarity and extreme axonal arborization, neurons depend on molecular motor proteins and microtubule-based transport for their normal function. Transport defects have been associated with neurodegeneration since axonopathies, axonal clogging, microtubule destabilization, and lower motor proteins levels were described in the brain of patients with Parkinson's Disease and other neurodegenerative disorders. However, the contribution of specific motor proteins to the regulation of the nigrostriatal network remains unclear. Here, we generated different conditional knockout mice for the kinesin heavy chain 5B subunit (Kif5b) of Kinesin-1 to unravel its contribution to locomotion. Interestingly, mice with neuronal Kif5b deletion showed hypo-locomotion, movement initiation deficits, and coordination impairments. High pressure liquid chromatography determined that dopamine (DA) metabolism is impaired in neuronal Kif5b-KO, while no dopaminergic cell loss was observed. However, the deletion of Kif5b only in dopaminergic neurons is not sufficient to induce locomotor defects. Noteworthy, pharmacological stimulation of DA release together with agonist or antagonist of DA receptors revealed selective D2-dependent movement initiation defects in neuronal Kif5b-KO. Finally, subcellular fractionation from striatum showed that Kif5b deletion reduced the amount of dopamine D2 receptor in synaptic plasma membranes. Together, these results revealed an important role for Kif5b in the modulation of the striatal network that is relevant to the overall locomotor response. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006633
003      
CZ-PrNML
005      
20200525100322.0
007      
ta
008      
200511s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/jnc.14665 $2 doi
035    __
$a (PubMed)30664247
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Cromberg, Lucas E $u Instituto de Biología Celular y Neurociencias IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
245    10
$a Neuronal KIF5b deletion induces striatum-dependent locomotor impairments and defects in membrane presentation of dopamine D2 receptors / $c LE. Cromberg, TMM. Saez, MG. Otero, E. Tomasella, M. Alloatti, A. Damianich, V. Pozo Devoto, J. Ferrario, D. Gelman, M. Rubinstein, TL. Falzone,
520    9_
$a The process of locomotion is controlled by fine-tuned dopaminergic neurons in the Substantia Nigra pars-compacta (SNpc) that projects their axons to the dorsal striatum regulating cortical innervations of medium spiny neurons. Dysfunction in dopaminergic neurotransmission within the striatum leads to movement impairments, gaiting defects, and hypo-locomotion. Due to their high polarity and extreme axonal arborization, neurons depend on molecular motor proteins and microtubule-based transport for their normal function. Transport defects have been associated with neurodegeneration since axonopathies, axonal clogging, microtubule destabilization, and lower motor proteins levels were described in the brain of patients with Parkinson's Disease and other neurodegenerative disorders. However, the contribution of specific motor proteins to the regulation of the nigrostriatal network remains unclear. Here, we generated different conditional knockout mice for the kinesin heavy chain 5B subunit (Kif5b) of Kinesin-1 to unravel its contribution to locomotion. Interestingly, mice with neuronal Kif5b deletion showed hypo-locomotion, movement initiation deficits, and coordination impairments. High pressure liquid chromatography determined that dopamine (DA) metabolism is impaired in neuronal Kif5b-KO, while no dopaminergic cell loss was observed. However, the deletion of Kif5b only in dopaminergic neurons is not sufficient to induce locomotor defects. Noteworthy, pharmacological stimulation of DA release together with agonist or antagonist of DA receptors revealed selective D2-dependent movement initiation defects in neuronal Kif5b-KO. Finally, subcellular fractionation from striatum showed that Kif5b deletion reduced the amount of dopamine D2 receptor in synaptic plasma membranes. Together, these results revealed an important role for Kif5b in the modulation of the striatal network that is relevant to the overall locomotor response. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
650    _2
$a zvířata $7 D000818
650    _2
$a corpus striatum $x metabolismus $7 D003342
650    _2
$a dopaminergní neurony $x metabolismus $7 D059290
650    _2
$a kineziny $x metabolismus $7 D016547
650    _2
$a lokomoce $x fyziologie $7 D008124
650    _2
$a myši $7 D051379
650    _2
$a myši knockoutované $7 D018345
650    _2
$a receptory dopaminu D2 $x metabolismus $7 D017448
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Saez, Trinidad M M $u Instituto de Biología Celular y Neurociencias IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina. Instituto de Biología y Medicina Experimental IBYME (CONICET), Buenos Aires, Argentina.
700    1_
$a Otero, María G $u Instituto de Biología Celular y Neurociencias IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
700    1_
$a Tomasella, Eugenia $u Instituto de Biología y Medicina Experimental IBYME (CONICET), Buenos Aires, Argentina.
700    1_
$a Alloatti, Matías $u Instituto de Biología Celular y Neurociencias IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
700    1_
$a Damianich, Ana $u Instituto de Investigaciones Farmacológicas ININFA, (CONICET-UBA), Buenos Aires, Argentina. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular INGEBI (CONICET), Buenos Aires, Argentina.
700    1_
$a Pozo Devoto, Victorio $u Center for Translational Medicine (CTM), International Clinical Research Center, St. Anne's University Hospital (ICRC-FNUSA), Brno, Czech Republic.
700    1_
$a Ferrario, Juan $u Instituto de Investigaciones Farmacológicas ININFA, (CONICET-UBA), Buenos Aires, Argentina.
700    1_
$a Gelman, Diego $u Instituto de Biología y Medicina Experimental IBYME (CONICET), Buenos Aires, Argentina.
700    1_
$a Rubinstein, Marcelo $u Instituto de Investigaciones en Ingeniería Genética y Biología Molecular INGEBI (CONICET), Buenos Aires, Argentina. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
700    1_
$a Falzone, Tomás L $u Instituto de Biología Celular y Neurociencias IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina. Instituto de Biología y Medicina Experimental IBYME (CONICET), Buenos Aires, Argentina.
773    0_
$w MED00002832 $t Journal of neurochemistry $x 1471-4159 $g Roč. 149, č. 3 (2019), s. 362-380
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30664247 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20200525100322 $b ABA008
999    __
$a ok $b bmc $g 1525491 $s 1096689
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 149 $c 3 $d 362-380 $e 20190214 $i 1471-4159 $m Journal of neurochemistry $n J Neurochem $x MED00002832
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...