• Je něco špatně v tomto záznamu ?

Personalized risk-based screening for diabetic retinopathy: A multivariate approach versus the use of stratification rules

M. García-Fiñana, DM. Hughes, CP. Cheyne, DM. Broadbent, A. Wang, A. Komárek, IM. Stratton, M. Mobayen-Rahni, A. Alshukri, JP. Vora, SP. Harding,

. 2019 ; 21 (3) : 560-568. [pub] 20181030

Jazyk angličtina Země Velká Británie

Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20006767

Grantová podpora
MR/L010909/1 Medical Research Council - United Kingdom
MR/R024847/1 Medical Research Council - United Kingdom
RP-PG-1210-12016 Department of Health - United Kingdom
MR/L010909/1 Medical Research Council - United Kingdom

AIMS: To evaluate our proposed multivariate approach to identify patients who will develop sight-threatening diabetic retinopathy (STDR) within a 1-year screen interval, and explore the impact of simple stratification rules on prediction. MATERIALS AND METHODS: A 7-year dataset (2009-2016) from people with diabetes (PWD) was analysed using a novel multivariate longitudinal discriminant approach. Level of diabetic retinopathy, assessed from routine digital screening photographs of both eyes, was jointly modelled using clinical data collected over time. Simple stratification rules based on retinopathy level were also applied and compared with the multivariate discriminant approach. RESULTS: Data from 13 103 PWD (49 520 screening episodes) were analysed. The multivariate approach accurately predicted whether patients developed STDR or not within 1 year from the time of prediction in 84.0% of patients (95% confidence interval [CI] 80.4-89.7), compared with 56.7% (95% CI 55.5-58.0) and 79.7% (95% CI 78.8-80.6) achieved by the two stratification rules. While the stratification rules detected up to 95.2% (95% CI 92.2-97.6) of the STDR cases (sensitivity) only 55.6% (95% CI 54.5-56.7) of patients who did not develop STDR were correctly identified (specificity), compared with 85.4% (95% CI 80.4-89.7%) and 84.0% (95% CI 80.7-87.6%), respectively, achieved by the multivariate risk model. CONCLUSIONS: Accurate prediction of progression to STDR in PWD can be achieved using a multivariate risk model whilst also maintaining desirable specificity. While simple stratification rules can achieve good levels of sensitivity, the present study indicates that their lower specificity (high false-positive rate) would therefore necessitate a greater frequency of eye examinations.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20006767
003      
CZ-PrNML
005      
20210607082114.0
007      
ta
008      
200511s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/dom.13552 $2 doi
035    __
$a (PubMed)30284381
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a García-Fiñana, Marta $u Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
245    10
$a Personalized risk-based screening for diabetic retinopathy: A multivariate approach versus the use of stratification rules / $c M. García-Fiñana, DM. Hughes, CP. Cheyne, DM. Broadbent, A. Wang, A. Komárek, IM. Stratton, M. Mobayen-Rahni, A. Alshukri, JP. Vora, SP. Harding,
520    9_
$a AIMS: To evaluate our proposed multivariate approach to identify patients who will develop sight-threatening diabetic retinopathy (STDR) within a 1-year screen interval, and explore the impact of simple stratification rules on prediction. MATERIALS AND METHODS: A 7-year dataset (2009-2016) from people with diabetes (PWD) was analysed using a novel multivariate longitudinal discriminant approach. Level of diabetic retinopathy, assessed from routine digital screening photographs of both eyes, was jointly modelled using clinical data collected over time. Simple stratification rules based on retinopathy level were also applied and compared with the multivariate discriminant approach. RESULTS: Data from 13 103 PWD (49 520 screening episodes) were analysed. The multivariate approach accurately predicted whether patients developed STDR or not within 1 year from the time of prediction in 84.0% of patients (95% confidence interval [CI] 80.4-89.7), compared with 56.7% (95% CI 55.5-58.0) and 79.7% (95% CI 78.8-80.6) achieved by the two stratification rules. While the stratification rules detected up to 95.2% (95% CI 92.2-97.6) of the STDR cases (sensitivity) only 55.6% (95% CI 54.5-56.7) of patients who did not develop STDR were correctly identified (specificity), compared with 85.4% (95% CI 80.4-89.7%) and 84.0% (95% CI 80.7-87.6%), respectively, achieved by the multivariate risk model. CONCLUSIONS: Accurate prediction of progression to STDR in PWD can be achieved using a multivariate risk model whilst also maintaining desirable specificity. While simple stratification rules can achieve good levels of sensitivity, the present study indicates that their lower specificity (high false-positive rate) would therefore necessitate a greater frequency of eye examinations.
650    _2
$a dospělí $7 D000328
650    _2
$a senioři $7 D000368
650    _2
$a datové soubory jako téma $7 D066264
650    _2
$a diabetes mellitus 2. typu $x komplikace $x diagnóza $x epidemiologie $x patologie $7 D003924
650    _2
$a diabetická retinopatie $x diagnóza $x epidemiologie $7 D003930
650    _2
$a progrese nemoci $7 D018450
650    _2
$a časná diagnóza $7 D042241
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a následné studie $7 D005500
650    _2
$a lidé $7 D006801
650    _2
$a individualita $7 D007206
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a plošný screening $x metody $7 D008403
650    _2
$a lidé středního věku $7 D008875
650    _2
$a individualizovaná medicína $x metody $7 D057285
650    _2
$a rizikové faktory $7 D012307
650    _2
$a senzitivita a specificita $7 D012680
655    _2
$a hodnotící studie $7 D023362
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hughes, David M $u Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
700    1_
$a Cheyne, Christopher P $u Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
700    1_
$a Broadbent, Deborah M $u Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK. St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK.
700    1_
$a Wang, Amu $u Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
700    1_
$a Komárek, Arnošt $u Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
700    1_
$a Stratton, Irene M $u Gloucestershire Retinal Research Group, Gloucestershire Hospitals NHS Foundation Trust, Cheltenham General Hospital, Cheltenham, UK.
700    1_
$a Mobayen-Rahni, Mehrdad $u Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK. Department of Medical Physics and Clinical Engineering, Royal Liverpool University Hospital, Liverpool, UK.
700    1_
$a Alshukri, Ayesh $u Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
700    1_
$a Vora, Jiten $u Diabetes and Endocrinology, Royal Liverpool University Hospital, Liverpool, UK. $7 xx026013001
700    1_
$a Harding, Simon P $u Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK. St Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK.
773    0_
$w MED00005425 $t Diabetes, obesity & metabolism $x 1463-1326 $g Roč. 21, č. 3 (2019), s. 560-568
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30284381 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20200511 $b ABA008
991    __
$a 20210607082117 $b ABA008
999    __
$a ok $b bmc $g 1525625 $s 1096823
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 21 $c 3 $d 560-568 $e 20181030 $i 1463-1326 $m Diabetes, obesity and metabolism $n Diabetes Obes Metab $x MED00005425
GRA    __
$a MR/L010909/1 $p Medical Research Council $2 United Kingdom
GRA    __
$a MR/R024847/1 $p Medical Research Council $2 United Kingdom
GRA    __
$a RP-PG-1210-12016 $p Department of Health $2 United Kingdom
GRA    __
$a MR/L010909/1 $p Medical Research Council $2 United Kingdom
LZP    __
$a Pubmed-20200511

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...