-
Je něco špatně v tomto záznamu ?
Combining Shapley value and statistics to the analysis of gene expression data in children exposed to air pollution
S. Moretti, D. van Leeuwen, H. Gmuender, S. Bonassi, J. van Delft, J. Kleinjans, F. Patrone, DF. Merlo,
Jazyk angličtina Země Velká Británie
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
NLK
BioMedCentral
od 2000-12-01
BioMedCentral Open Access
od 2000
Directory of Open Access Journals
od 2000
Free Medical Journals
od 2000
PubMed Central
od 2000
Europe PubMed Central
od 2000
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2000-07-01
Medline Complete (EBSCOhost)
od 2000-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
Springer Nature OA/Free Journals
od 2000-12-01
PubMed
18764936
DOI
10.1186/1471-2105-9-361
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- biologické markery analýza MeSH
- biologické modely MeSH
- dítě MeSH
- epidemiologické metody MeSH
- hodnocení rizik metody MeSH
- interpretace statistických dat * MeSH
- lidé MeSH
- počítačová simulace MeSH
- proteom analýza MeSH
- rizikové faktory MeSH
- stanovení celkové genové exprese metody statistika a číselné údaje MeSH
- statistické modely MeSH
- vystavení vlivu životního prostředí analýza statistika a číselné údaje MeSH
- znečištění ovzduší statistika a číselné údaje MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
BACKGROUND: In gene expression analysis, statistical tests for differential gene expression provide lists of candidate genes having, individually, a sufficiently low p-value. However, the interpretation of each single p-value within complex systems involving several interacting genes is problematic. In parallel, in the last sixty years, game theory has been applied to political and social problems to assess the power of interacting agents in forcing a decision and, more recently, to represent the relevance of genes in response to certain conditions. RESULTS: In this paper we introduce a Bootstrap procedure to test the null hypothesis that each gene has the same relevance between two conditions, where the relevance is represented by the Shapley value of a particular coalitional game defined on a microarray data-set. This method, which is called Comparative Analysis of Shapley value (shortly, CASh), is applied to data concerning the gene expression in children differentially exposed to air pollution. The results provided by CASh are compared with the results from a parametric statistical test for testing differential gene expression. Both lists of genes provided by CASh and t-test are informative enough to discriminate exposed subjects on the basis of their gene expression profiles. While many genes are selected in common by CASh and the parametric test, it turns out that the biological interpretation of the differences between these two selections is more interesting, suggesting a different interpretation of the main biological pathways in gene expression regulation for exposed individuals. A simulation study suggests that CASh offers more power than t-test for the detection of differential gene expression variability. CONCLUSION: CASh is successfully applied to gene expression analysis of a data-set where the joint expression behavior of genes may be critical to characterize the expression response to air pollution. We demonstrate a synergistic effect between coalitional games and statistics that resulted in a selection of genes with a potential impact in the regulation of complex pathways.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20014384
- 003
- CZ-PrNML
- 005
- 20200921152837.0
- 007
- ta
- 008
- 200918s2008 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/1471-2105-9-361 $2 doi
- 035 __
- $a (PubMed)18764936
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Moretti, Stefano $u Epidemiology and Biostatistics, National Cancer Research Institute, Genova, Italy. stefano.moretti@istge.it
- 245 10
- $a Combining Shapley value and statistics to the analysis of gene expression data in children exposed to air pollution / $c S. Moretti, D. van Leeuwen, H. Gmuender, S. Bonassi, J. van Delft, J. Kleinjans, F. Patrone, DF. Merlo,
- 520 9_
- $a BACKGROUND: In gene expression analysis, statistical tests for differential gene expression provide lists of candidate genes having, individually, a sufficiently low p-value. However, the interpretation of each single p-value within complex systems involving several interacting genes is problematic. In parallel, in the last sixty years, game theory has been applied to political and social problems to assess the power of interacting agents in forcing a decision and, more recently, to represent the relevance of genes in response to certain conditions. RESULTS: In this paper we introduce a Bootstrap procedure to test the null hypothesis that each gene has the same relevance between two conditions, where the relevance is represented by the Shapley value of a particular coalitional game defined on a microarray data-set. This method, which is called Comparative Analysis of Shapley value (shortly, CASh), is applied to data concerning the gene expression in children differentially exposed to air pollution. The results provided by CASh are compared with the results from a parametric statistical test for testing differential gene expression. Both lists of genes provided by CASh and t-test are informative enough to discriminate exposed subjects on the basis of their gene expression profiles. While many genes are selected in common by CASh and the parametric test, it turns out that the biological interpretation of the differences between these two selections is more interesting, suggesting a different interpretation of the main biological pathways in gene expression regulation for exposed individuals. A simulation study suggests that CASh offers more power than t-test for the detection of differential gene expression variability. CONCLUSION: CASh is successfully applied to gene expression analysis of a data-set where the joint expression behavior of genes may be critical to characterize the expression response to air pollution. We demonstrate a synergistic effect between coalitional games and statistics that resulted in a selection of genes with a potential impact in the regulation of complex pathways.
- 650 _2
- $a znečištění ovzduší $x statistika a číselné údaje $7 D000397
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a biologické markery $x analýza $7 D015415
- 650 _2
- $a dítě $7 D002648
- 650 _2
- $a počítačová simulace $7 D003198
- 650 12
- $a interpretace statistických dat $7 D003627
- 650 _2
- $a vystavení vlivu životního prostředí $x analýza $x statistika a číselné údaje $7 D004781
- 650 _2
- $a epidemiologické metody $7 D004812
- 650 _2
- $a stanovení celkové genové exprese $x metody $x statistika a číselné údaje $7 D020869
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a biologické modely $7 D008954
- 650 _2
- $a statistické modely $7 D015233
- 650 _2
- $a proteom $x analýza $7 D020543
- 650 _2
- $a hodnocení rizik $x metody $7 D018570
- 650 _2
- $a rizikové faktory $7 D012307
- 651 _2
- $a Česká republika $x epidemiologie $7 D018153
- 655 _2
- $a hodnotící studie $7 D023362
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a van Leeuwen, Danitsja
- 700 1_
- $a Gmuender, Hans
- 700 1_
- $a Bonassi, Stefano
- 700 1_
- $a van Delft, Joost
- 700 1_
- $a Kleinjans, Jos
- 700 1_
- $a Patrone, Fioravante
- 700 1_
- $a Merlo, Domenico Franco
- 773 0_
- $w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 9, č. - (2008), s. 361
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/18764936 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20200918 $b ABA008
- 991 __
- $a 20200921152836 $b ABA008
- 999 __
- $a ok $b bmc $g 1565236 $s 1104542
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2008 $b 9 $c - $d 361 $e 20080902 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
- LZP __
- $a Pubmed-20200918