Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

p21 limits S phase DNA damage caused by the Wee1 inhibitor MK1775

S. Hauge, L. Macurek, RG. Syljuåsen,

. 2019 ; 18 (8) : 834-847. [pub] 20190403

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20022795

E-zdroje NLK Online Plný text

Free Medical Journals od 2002 do Před 1 rokem
PubMed Central od 2009 do Před 1 rokem
Europe PubMed Central od 2009 do Před 1 rokem

The Wee1 inhibitor MK1775 (AZD1775) is currently being tested in clinical trials for cancer treatment. Here, we show that the p53 target and CDK inhibitor p21 protects against MK1775-induced DNA damage during S-phase. Cancer and normal cells deficient for p21 (HCT116 p21-/-, RPE p21-/-, and U2OS transfected with p21 siRNA) showed higher induction of the DNA damage marker γH2AX in S-phase in response to MK1775 compared to the respective parental cells. Furthermore, upon MK1775 treatment the levels of phospho-DNA PKcs S2056 and phospho-RPA S4/S8 were higher in the p21 deficient cells, consistent with increased DNA breakage. Cell cycle analysis revealed that these effects were due to an S-phase function of p21, but MK1775-induced S-phase CDK activity was not altered as measured by CDK-dependent phosphorylations. In the p21 deficient cancer cells MK1775-induced cell death was also increased. Moreover, p21 deficiency sensitized to combined treatment of MK1775 and the CHK1-inhibitor AZD6772, and to the combination of MK1775 with ionizing radiation. These results show that p21 protects cancer cells against Wee1 inhibition and suggest that S-phase functions of p21 contribute to mediate such protection. As p21 can be epigenetically downregulated in human cancer, we propose that p21 levels may be considered during future applications of Wee1 inhibitors.

000      
00000naa a2200000 a 4500
001      
bmc20022795
003      
CZ-PrNML
005      
20201214124820.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1080/15384101.2019.1593649 $2 doi
035    __
$a (PubMed)30943845
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Hauge, Sissel $u a Department of Radiation Biology , Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo , Norway.
245    10
$a p21 limits S phase DNA damage caused by the Wee1 inhibitor MK1775 / $c S. Hauge, L. Macurek, RG. Syljuåsen,
520    9_
$a The Wee1 inhibitor MK1775 (AZD1775) is currently being tested in clinical trials for cancer treatment. Here, we show that the p53 target and CDK inhibitor p21 protects against MK1775-induced DNA damage during S-phase. Cancer and normal cells deficient for p21 (HCT116 p21-/-, RPE p21-/-, and U2OS transfected with p21 siRNA) showed higher induction of the DNA damage marker γH2AX in S-phase in response to MK1775 compared to the respective parental cells. Furthermore, upon MK1775 treatment the levels of phospho-DNA PKcs S2056 and phospho-RPA S4/S8 were higher in the p21 deficient cells, consistent with increased DNA breakage. Cell cycle analysis revealed that these effects were due to an S-phase function of p21, but MK1775-induced S-phase CDK activity was not altered as measured by CDK-dependent phosphorylations. In the p21 deficient cancer cells MK1775-induced cell death was also increased. Moreover, p21 deficiency sensitized to combined treatment of MK1775 and the CHK1-inhibitor AZD6772, and to the combination of MK1775 with ionizing radiation. These results show that p21 protects cancer cells against Wee1 inhibition and suggest that S-phase functions of p21 contribute to mediate such protection. As p21 can be epigenetically downregulated in human cancer, we propose that p21 levels may be considered during future applications of Wee1 inhibitors.
650    _2
$a antitumorózní látky $x farmakologie $x terapeutické užití $7 D000970
650    _2
$a proteiny buněčného cyklu $x antagonisté a inhibitory $7 D018797
650    _2
$a viabilita buněk $x účinky léků $x genetika $x účinky záření $7 D002470
650    _2
$a checkpoint kinasa 1 $x antagonisté a inhibitory $7 D000071877
650    _2
$a inhibitor p21 cyklin-dependentní kinasy $x genetika $x metabolismus $7 D050759
650    _2
$a cyklin-dependentní kinasy $x antagonisté a inhibitory $x metabolismus $7 D018844
650    _2
$a poškození DNA $x účinky léků $x genetika $7 D004249
650    _2
$a HCT116 buňky $7 D045325
650    _2
$a lidé $7 D006801
650    _2
$a nádory $x farmakoterapie $x metabolismus $7 D009369
650    _2
$a fosforylace $x účinky léků $7 D010766
650    _2
$a tyrosinkinasy $x antagonisté a inhibitory $7 D011505
650    _2
$a pyrazoly $x farmakologie $x terapeutické užití $7 D011720
650    _2
$a pyrimidinony $x farmakologie $x terapeutické užití $7 D011744
650    _2
$a malá interferující RNA $x genetika $7 D034741
650    _2
$a kontrolní body fáze S buněčného cyklu $x účinky léků $7 D059807
650    _2
$a transfekce $7 D014162
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Macurek, Libor $u b Department of Cancer Cell Biology , Institute of Molecular Genetics of the ASCR , Prague , Czech Republic.
700    1_
$a Syljuåsen, Randi G $u a Department of Radiation Biology , Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital , Oslo , Norway.
773    0_
$w MED00173232 $t Cell cycle (Georgetown, Tex.) $x 1551-4005 $g Roč. 18, č. 8 (2019), s. 834-847
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30943845 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214124820 $b ABA008
999    __
$a ok $b bmc $g 1595114 $s 1113471
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 18 $c 8 $d 834-847 $e 20190403 $i 1551-4005 $m Cell Cycle $n Cell Cycle $x MED00173232
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...