-
Je něco špatně v tomto záznamu ?
Diffusion coefficients of polar organic compounds in agarose hydrogel and water and their use for estimating uptake in passive samplers
J. Urík, A. Paschke, B. Vrana,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
- MeSH
- biologický transport MeSH
- chemické látky znečišťující vodu analýza MeSH
- difuze MeSH
- hydrogely MeSH
- kinetika MeSH
- kosmetické přípravky MeSH
- monitorování životního prostředí přístrojové vybavení metody MeSH
- organické látky MeSH
- pesticidy analýza MeSH
- sefarosa analýza MeSH
- teplota MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
Diffusion coefficient (D) is an important parameter for prediction of micropollutant uptake kinetics in passive samplers. Passive samplers are nowadays commonly used for monitoring trace organic pollutants in different environmental matrices. Samplers utilising a hydrogel layer to control compound diffusion are gaining popularity. In this work we investigated diffusion of several perfluoroalkyl substances, currently used pesticides, pharmaceuticals and personal care products in 1.5% agarose hydrogel by measuring diffusion coefficients using two methods: a diffusion cell and a sheet stacking technique. Further, diffusion coefficients in water were measured using Taylor dispersion method. The sheet stacking method was used to measure D at 5, 12, 24, and 33 °C in order to investigate temperature effect on diffusion. Median D values ranged from 2.0 to 8.6 × 10-6 cm2 s-1 and from 2.1 to 8.5 × 10-6 cm2 s-1 for the diffusion cell and sheet stack methods respectively. For most compounds, the variability between replicates was higher than the difference between values obtained by the two methods. Rising temperature from 10 to 20 °C increases the diffusion rate by the factor of 1.41 ± 0.10 in average. In water, average D values ranged from 3.03 to 10.0 × 10-6 cm2 s-1 and were comparable to values in hydrogel, but some compounds including perfluoroalkyl substances with a long aliphatic chain could not be evaluated properly due to sorptive interactions with capillary walls in the Taylor dispersion method. Sampling rates estimated using the measured D values were systematically higher than values estimated from laboratory sampler calibration in our previously published study, by the factor of 2.2 ± 1.0 in average.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023010
- 003
- CZ-PrNML
- 005
- 20201214125118.0
- 007
- ta
- 008
- 201125s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.chemosphere.2020.126183 $2 doi
- 035 __
- $a (PubMed)32088466
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Urík, Jakub $u RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- 245 10
- $a Diffusion coefficients of polar organic compounds in agarose hydrogel and water and their use for estimating uptake in passive samplers / $c J. Urík, A. Paschke, B. Vrana,
- 520 9_
- $a Diffusion coefficient (D) is an important parameter for prediction of micropollutant uptake kinetics in passive samplers. Passive samplers are nowadays commonly used for monitoring trace organic pollutants in different environmental matrices. Samplers utilising a hydrogel layer to control compound diffusion are gaining popularity. In this work we investigated diffusion of several perfluoroalkyl substances, currently used pesticides, pharmaceuticals and personal care products in 1.5% agarose hydrogel by measuring diffusion coefficients using two methods: a diffusion cell and a sheet stacking technique. Further, diffusion coefficients in water were measured using Taylor dispersion method. The sheet stacking method was used to measure D at 5, 12, 24, and 33 °C in order to investigate temperature effect on diffusion. Median D values ranged from 2.0 to 8.6 × 10-6 cm2 s-1 and from 2.1 to 8.5 × 10-6 cm2 s-1 for the diffusion cell and sheet stack methods respectively. For most compounds, the variability between replicates was higher than the difference between values obtained by the two methods. Rising temperature from 10 to 20 °C increases the diffusion rate by the factor of 1.41 ± 0.10 in average. In water, average D values ranged from 3.03 to 10.0 × 10-6 cm2 s-1 and were comparable to values in hydrogel, but some compounds including perfluoroalkyl substances with a long aliphatic chain could not be evaluated properly due to sorptive interactions with capillary walls in the Taylor dispersion method. Sampling rates estimated using the measured D values were systematically higher than values estimated from laboratory sampler calibration in our previously published study, by the factor of 2.2 ± 1.0 in average.
- 650 _2
- $a biologický transport $7 D001692
- 650 _2
- $a kosmetické přípravky $7 D003358
- 650 _2
- $a difuze $7 D004058
- 650 _2
- $a monitorování životního prostředí $x přístrojové vybavení $x metody $7 D004784
- 650 _2
- $a hydrogely $7 D020100
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a organické látky $7 D009930
- 650 _2
- $a pesticidy $x analýza $7 D010575
- 650 _2
- $a sefarosa $x analýza $7 D012685
- 650 _2
- $a teplota $7 D013696
- 650 _2
- $a voda $7 D014867
- 650 _2
- $a chemické látky znečišťující vodu $x analýza $7 D014874
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Paschke, Albrecht $u UFZ-Department of Ecological Chemistry, Helmholtz-Centre for Environmental Research, Permoserstraße 15, 04318, Leipzig, Germany.
- 700 1_
- $a Vrana, Branislav $u RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic. Electronic address: branislav.vrana@recetox.muni.cz.
- 773 0_
- $w MED00002124 $t Chemosphere $x 1879-1298 $g Roč. 249, č. - (2020), s. 126183
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32088466 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214125118 $b ABA008
- 999 __
- $a ok $b bmc $g 1595329 $s 1113686
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 249 $c - $d 126183 $e 20200213 $i 1879-1298 $m Chemosphere $n Chemosphere $x MED00002124
- LZP __
- $a Pubmed-20201125