• Something wrong with this record ?

KRAS pathway expression changes in pancreatic cancer models by conventional and experimental taxanes

M. Oliverius, D. Flasarova, B. Mohelnikova-Duchonova, M. Ehrlichova, V. Hlavac, M. Kocik, O. Strouhal, P. Dvorak, I. Ojima, P. Soucek,

. 2019 ; 34 (5-6) : 403-411. [pub] 20191219

Language English Country Great Britain

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
NV16-28375A MZ0 CEP Register

The KRAS signalling pathway is pivotal for pancreatic ductal adenocarcinoma (PDAC) development. After the failure of most conventional cytotoxic and targeted therapeutics tested so far, the combination of taxane nab-paclitaxel (Abraxane) with gemcitabine recently demonstrated promising improvements in the survival of PDAC patients. This study aimed to explore interactions of conventional paclitaxel and experimental taxane SB-T-1216 with the KRAS signalling pathway expression in in vivo and in vitro PDAC models in order to decipher potential predictive biomarkers or targets for future individualised therapy. Mouse PDAC PaCa-44 xenograft model was used for evaluation of changes in transcript and protein levels of the KRAS signalling pathway caused by administration of experimental taxane SB-T-1216 in vivo. Subsequently, KRAS wild-type (BxPc-3) and mutated (MiaPaCa-2 and PaCa-44) cell line models were treated with paclitaxel to verify dysregulation of the KRAS signalling pathway gene expression profile in vitro and investigate the role of KRAS mutation status. By comparing the gene expression profiles, this study observed for the first time that in vitro cell models differ in the basal transcriptional profile of the KRAS signalling pathway, but there were no differences between KRAS mutated and wild-type cells in sensitivity to taxanes. Generally, the taxane administration caused a downregulation of the KRAS signalling pathway both in vitro and in vivo, but this effect was not dependent on the KRAS mutation status. In conclusion, putative biomarkers for prediction of taxane activity or targets for stimulation of taxane anticancer effects were not discovered by the KRAS signalling pathway profiling in various PDAC models.

000      
00000naa a2200000 a 4500
001      
bmc20023321
003      
CZ-PrNML
005      
20201214125739.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/mutage/gez021 $2 doi
035    __
$a (PubMed)31375828
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Oliverius, M $u Department of Surgery, Faculty Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic. Transplantation Center, Institute of Clinical and Experimental Medicine, Prague, Czech Republic.
245    10
$a KRAS pathway expression changes in pancreatic cancer models by conventional and experimental taxanes / $c M. Oliverius, D. Flasarova, B. Mohelnikova-Duchonova, M. Ehrlichova, V. Hlavac, M. Kocik, O. Strouhal, P. Dvorak, I. Ojima, P. Soucek,
520    9_
$a The KRAS signalling pathway is pivotal for pancreatic ductal adenocarcinoma (PDAC) development. After the failure of most conventional cytotoxic and targeted therapeutics tested so far, the combination of taxane nab-paclitaxel (Abraxane) with gemcitabine recently demonstrated promising improvements in the survival of PDAC patients. This study aimed to explore interactions of conventional paclitaxel and experimental taxane SB-T-1216 with the KRAS signalling pathway expression in in vivo and in vitro PDAC models in order to decipher potential predictive biomarkers or targets for future individualised therapy. Mouse PDAC PaCa-44 xenograft model was used for evaluation of changes in transcript and protein levels of the KRAS signalling pathway caused by administration of experimental taxane SB-T-1216 in vivo. Subsequently, KRAS wild-type (BxPc-3) and mutated (MiaPaCa-2 and PaCa-44) cell line models were treated with paclitaxel to verify dysregulation of the KRAS signalling pathway gene expression profile in vitro and investigate the role of KRAS mutation status. By comparing the gene expression profiles, this study observed for the first time that in vitro cell models differ in the basal transcriptional profile of the KRAS signalling pathway, but there were no differences between KRAS mutated and wild-type cells in sensitivity to taxanes. Generally, the taxane administration caused a downregulation of the KRAS signalling pathway both in vitro and in vivo, but this effect was not dependent on the KRAS mutation status. In conclusion, putative biomarkers for prediction of taxane activity or targets for stimulation of taxane anticancer effects were not discovered by the KRAS signalling pathway profiling in various PDAC models.
650    _2
$a albuminy $x farmakologie $7 D000418
650    _2
$a zvířata $7 D000818
650    _2
$a protokoly antitumorózní kombinované chemoterapie $x farmakologie $7 D000971
650    _2
$a nádorové biomarkery $x genetika $7 D014408
650    _2
$a přemostěné cyklické sloučeniny $x farmakologie $7 D001952
650    _2
$a duktální karcinom pankreatu $x farmakoterapie $x genetika $7 D021441
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a proliferace buněk $x účinky léků $x genetika $7 D049109
650    _2
$a deoxycytidin $x analogy a deriváty $x farmakologie $7 D003841
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a myši $7 D051379
650    _2
$a myši nahé $7 D008819
650    _2
$a paclitaxel $x farmakologie $7 D017239
650    _2
$a nádory slinivky břišní $x farmakoterapie $x genetika $7 D010190
650    _2
$a protoonkogenní proteiny p21(ras) $x genetika $7 D016283
650    _2
$a signální transdukce $x účinky léků $x genetika $7 D015398
650    _2
$a taxoidy $x farmakologie $7 D043823
650    _2
$a transkriptom $x účinky léků $x genetika $7 D059467
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Flasarova, D $u Department of Oncology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
700    1_
$a Mohelnikova-Duchonova, B $u Department of Oncology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic. Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic.
700    1_
$a Ehrlichova, M $u Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
700    1_
$a Hlavac, V $u Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
700    1_
$a Kocik, M $u Transplantation Center, Institute of Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Strouhal, O $u Department of Oncology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
700    1_
$a Dvorak, P $u Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
700    1_
$a Ojima, I $u Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, USA.
700    1_
$a Soucek, P $u Department of Toxicogenomics, National Institute of Public Health, Prague, Czech Republic. Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
773    0_
$w MED00003429 $t Mutagenesis $x 1464-3804 $g Roč. 34, č. 5-6 (2019), s. 403-411
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31375828 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214125738 $b ABA008
999    __
$a ok $b bmc $g 1595640 $s 1113997
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 34 $c 5-6 $d 403-411 $e 20191219 $i 1464-3804 $m Mutagenesis $n Mutagenesis $x MED00003429
GRA    __
$a NV16-28375A $p MZ0
LZP    __
$a Pubmed-20201125

Find record

Citation metrics

Loading data...

Archiving options

Loading data...