-
Je něco špatně v tomto záznamu ?
Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants
V. Bahrambeigi, X. Song, K. Sperle, CR. Beck, H. Hijazi, CM. Grochowski, S. Gu, P. Seeman, KJ. Woodward, CMB. Carvalho, GM. Hobson, JR. Lupski,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R35 GM133600
NIGMS NIH HHS - United States
UM1 HG006542
NHGRI NIH HHS - United States
R35 NS105078
NINDS NIH HHS - United States
GM106373
NIGMS NIH HHS - United States
R01 GM106373
NIGMS NIH HHS - United States
R01 NS058529
NINDS NIH HHS - United States
R00 GM120453
NIGMS NIH HHS - United States
R01 NS058978
NINDS NIH HHS - United States
UM1HG006542
National Heart, Lung, and Blood Institute (US)/National Human Genome Research Institute - International
P30 GM114736
NIGMS NIH HHS - United States
NV16-30206A
MZ0
CEP - Centrální evidence projektů
Digitální knihovna NLK
Plný text - Článek
NLK
BioMedCentral
od 2009-01-01
BioMedCentral Open Access
od 2009
Directory of Open Access Journals
od 2009
Free Medical Journals
od 2009
PubMed Central
od 2009
Europe PubMed Central
od 2009
ProQuest Central
od 2015-01-01
Open Access Digital Library
od 2009-01-01
Open Access Digital Library
od 2009-01-01
Health & Medicine (ProQuest)
od 2015-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2009
Springer Nature OA/Free Journals
od 2009-01-01
- MeSH
- body zlomu chromozomu MeSH
- duplikace genu MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- genom lidský MeSH
- genomika metody MeSH
- genová přestavba * MeSH
- jednonukleotidový polymorfismus MeSH
- lidé MeSH
- mutace * MeSH
- myelinový proteolipidový protein genetika MeSH
- nestabilita genomu MeSH
- srovnávací genomová hybridizace MeSH
- variabilita počtu kopií segmentů DNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: We investigated the features of the genomic rearrangements in a cohort of 50 male individuals with proteolipid protein 1 (PLP1) copy number gain events who were ascertained with Pelizaeus-Merzbacher disease (PMD; MIM: 312080). We then compared our new data to previous structural variant mutagenesis studies involving the Xq22 region of the human genome. The aggregate data from 159 sequenced join-points (discontinuous sequences in the reference genome that are joined during the rearrangement process) were studied. Analysis of these data from 150 individuals enabled the spectrum and relative distribution of the underlying genomic mutational signatures to be delineated. METHODS: Genomic rearrangements in PMD individuals with PLP1 copy number gain events were investigated by high-density customized array or clinical chromosomal microarray analysis and breakpoint junction sequence analysis. RESULTS: High-density customized array showed that the majority of cases (33/50; ~ 66%) present with single duplications, although complex genomic rearrangements (CGRs) are also frequent (17/50; ~ 34%). Breakpoint mapping to nucleotide resolution revealed further previously unknown structural and sequence complexities, even in single duplications. Meta-analysis of all studied rearrangements that occur at the PLP1 locus showed that single duplications were found in ~ 54% of individuals and that, among all CGR cases, triplication flanked by duplications is the most frequent CGR array CGH pattern observed. Importantly, in ~ 32% of join-points, there is evidence for a mutational signature of microhomeology (highly similar yet imperfect sequence matches). CONCLUSIONS: These data reveal a high frequency of CGRs at the PLP1 locus and support the assertion that replication-based mechanisms are prominent contributors to the formation of CGRs at Xq22. We propose that microhomeology can facilitate template switching, by stabilizing strand annealing of the primer using W-C base complementarity, and is a mutational signature for replicative repair.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023345
- 003
- CZ-PrNML
- 005
- 20201214125816.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s13073-019-0676-0 $2 doi
- 035 __
- $a (PubMed)31818324
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Bahrambeigi, Vahid $u Graduate Program in Diagnostic Genetics, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. Present address: Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center UTHealth, Houston, TX, USA.
- 245 10
- $a Distinct patterns of complex rearrangements and a mutational signature of microhomeology are frequently observed in PLP1 copy number gain structural variants / $c V. Bahrambeigi, X. Song, K. Sperle, CR. Beck, H. Hijazi, CM. Grochowski, S. Gu, P. Seeman, KJ. Woodward, CMB. Carvalho, GM. Hobson, JR. Lupski,
- 520 9_
- $a BACKGROUND: We investigated the features of the genomic rearrangements in a cohort of 50 male individuals with proteolipid protein 1 (PLP1) copy number gain events who were ascertained with Pelizaeus-Merzbacher disease (PMD; MIM: 312080). We then compared our new data to previous structural variant mutagenesis studies involving the Xq22 region of the human genome. The aggregate data from 159 sequenced join-points (discontinuous sequences in the reference genome that are joined during the rearrangement process) were studied. Analysis of these data from 150 individuals enabled the spectrum and relative distribution of the underlying genomic mutational signatures to be delineated. METHODS: Genomic rearrangements in PMD individuals with PLP1 copy number gain events were investigated by high-density customized array or clinical chromosomal microarray analysis and breakpoint junction sequence analysis. RESULTS: High-density customized array showed that the majority of cases (33/50; ~ 66%) present with single duplications, although complex genomic rearrangements (CGRs) are also frequent (17/50; ~ 34%). Breakpoint mapping to nucleotide resolution revealed further previously unknown structural and sequence complexities, even in single duplications. Meta-analysis of all studied rearrangements that occur at the PLP1 locus showed that single duplications were found in ~ 54% of individuals and that, among all CGR cases, triplication flanked by duplications is the most frequent CGR array CGH pattern observed. Importantly, in ~ 32% of join-points, there is evidence for a mutational signature of microhomeology (highly similar yet imperfect sequence matches). CONCLUSIONS: These data reveal a high frequency of CGRs at the PLP1 locus and support the assertion that replication-based mechanisms are prominent contributors to the formation of CGRs at Xq22. We propose that microhomeology can facilitate template switching, by stabilizing strand annealing of the primer using W-C base complementarity, and is a mutational signature for replicative repair.
- 650 _2
- $a body zlomu chromozomu $7 D056905
- 650 _2
- $a srovnávací genomová hybridizace $7 D055028
- 650 12
- $a variabilita počtu kopií segmentů DNA $7 D056915
- 650 _2
- $a duplikace genu $7 D020440
- 650 12
- $a genová přestavba $7 D015321
- 650 _2
- $a genetické asociační studie $7 D056726
- 650 _2
- $a genetická predispozice k nemoci $7 D020022
- 650 _2
- $a genom lidský $7 D015894
- 650 _2
- $a nestabilita genomu $7 D042822
- 650 _2
- $a genomika $x metody $7 D023281
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a mutace $7 D009154
- 650 _2
- $a myelinový proteolipidový protein $x genetika $7 D018991
- 650 _2
- $a jednonukleotidový polymorfismus $7 D020641
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Song, Xiaofei $u Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, USA.
- 700 1_
- $a Sperle, Karen $u Nemours Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, 1600 Rockland Road, RC1, Wilmington, DE, USA.
- 700 1_
- $a Beck, Christine R $u Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, USA. Present address: Department of Genetics and Genome Sciences, University of Connecticut Health Center and the Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- 700 1_
- $a Hijazi, Hadia $u Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, USA.
- 700 1_
- $a Grochowski, Christopher M $u Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, USA.
- 700 1_
- $a Gu, Shen $u School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR.
- 700 1_
- $a Seeman, Pavel $u DNA Laboratory, Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital Motol, 150 06, Prague, Czech Republic.
- 700 1_
- $a Woodward, Karen J $u Clinical and Molecular Genetics Unit, Institute of Child Health, London, UK. Present address: Diagnostic Genomics, PathWest Laboratory Medicine, Perth, WA, Australia. School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.
- 700 1_
- $a Carvalho, Claudia M B $u Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, USA.
- 700 1_
- $a Hobson, Grace M $u Nemours Biomedical Research, Nemours/Alfred I. DuPont Hospital for Children, 1600 Rockland Road, RC1, Wilmington, DE, USA. Grace.Hobson@nemours.org. Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA, USA. Grace.Hobson@nemours.org. Department of Biological Sciences, University of Delaware, Newark, DE, USA. Grace.Hobson@nemours.org.
- 700 1_
- $a Lupski, James R $u Graduate Program in Diagnostic Genetics, School of Health Professions, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. Jlupski@bcm.edu. Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Room 604B, Houston, TX, USA. Jlupski@bcm.edu. Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. Jlupski@bcm.edu. Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA. Jlupski@bcm.edu. Texas Children's Hospital, Houston, TX, USA. Jlupski@bcm.edu.
- 773 0_
- $w MED00174694 $t Genome medicine $x 1756-994X $g Roč. 11, č. 1 (2019), s. 80
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31818324 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214125815 $b ABA008
- 999 __
- $a ok $b bmc $g 1595664 $s 1114021
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 11 $c 1 $d 80 $e 20191209 $i 1756-994X $m Genome medicine $n Genome Med $x MED00174694
- GRA __
- $a R35 GM133600 $p NIGMS NIH HHS $2 United States
- GRA __
- $a UM1 HG006542 $p NHGRI NIH HHS $2 United States
- GRA __
- $a R35 NS105078 $p NINDS NIH HHS $2 United States
- GRA __
- $a GM106373 $p NIGMS NIH HHS $2 United States
- GRA __
- $a R01 GM106373 $p NIGMS NIH HHS $2 United States
- GRA __
- $a R01 NS058529 $p NINDS NIH HHS $2 United States
- GRA __
- $a R00 GM120453 $p NIGMS NIH HHS $2 United States
- GRA __
- $a R01 NS058978 $p NINDS NIH HHS $2 United States
- GRA __
- $a UM1HG006542 $p National Heart, Lung, and Blood Institute (US)/National Human Genome Research Institute $2 International
- GRA __
- $a P30 GM114736 $p NIGMS NIH HHS $2 United States
- GRA __
- $a NV16-30206A $p MZ0
- LZP __
- $a Pubmed-20201125