-
Je něco špatně v tomto záznamu ?
The yeast proteases Ddi1 and Wss1 are both involved in the DNA replication stress response
M. Svoboda, J. Konvalinka, JF. Trempe, K. Grantz Saskova,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- DNA metabolismus MeSH
- hydroxymočovina toxicita MeSH
- oprava DNA MeSH
- poškození DNA MeSH
- replikace DNA * MeSH
- Saccharomyces cerevisiae - proteiny metabolismus MeSH
- Saccharomyces cerevisiae účinky léků enzymologie genetika metabolismus MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Genome integrity and cell survival are dependent on proper replication stress response. Multiple repair pathways addressing obstacles generated by replication stress arose during evolution, and a detailed understanding of these processes is crucial for treatment of numerous human diseases. Here, we investigated the strong negative genetic interaction between two proteases involved in the DNA replication stress response, yeast Wss1 and Ddi1. While Wss1 proteolytically acts on DNA-protein crosslinks, mammalian DDI1 and DDI2 proteins remove RTF2 from stalled forks via a proposed proteasome shuttle hypothesis. We show that the double-deleted Δddi1, Δwss1 yeast strain is hypersensitive to the replication drug hydroxyurea and that this phenotype can be complemented only by catalytically competent Ddi1 protease. Furthermore, our data show the key involvement of the helical domain preceding the Ddi1 protease domain in response to replication stress caused by hydroxyurea, offering the first suggestion of this domain's biological function. Overall, our study provides a basis for a novel dual protease-based mechanism enabling yeast cells to counteract DNA replication stress.
Department of Biochemistry Charles University Hlavova 8 12843 Prague Czech Republic
Department of Genetics and Microbiology Charles University Viničná 5 12843 Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023762
- 003
- CZ-PrNML
- 005
- 20201214131107.0
- 007
- ta
- 008
- 201125s2019 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.dnarep.2019.06.008 $2 doi
- 035 __
- $a (PubMed)31276951
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Svoboda, Michal $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic; Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, 12843, Prague, Czech Republic; Department of Genetics and Microbiology, Charles University, Viničná 5, 12843, Prague, Czech Republic.
- 245 14
- $a The yeast proteases Ddi1 and Wss1 are both involved in the DNA replication stress response / $c M. Svoboda, J. Konvalinka, JF. Trempe, K. Grantz Saskova,
- 520 9_
- $a Genome integrity and cell survival are dependent on proper replication stress response. Multiple repair pathways addressing obstacles generated by replication stress arose during evolution, and a detailed understanding of these processes is crucial for treatment of numerous human diseases. Here, we investigated the strong negative genetic interaction between two proteases involved in the DNA replication stress response, yeast Wss1 and Ddi1. While Wss1 proteolytically acts on DNA-protein crosslinks, mammalian DDI1 and DDI2 proteins remove RTF2 from stalled forks via a proposed proteasome shuttle hypothesis. We show that the double-deleted Δddi1, Δwss1 yeast strain is hypersensitive to the replication drug hydroxyurea and that this phenotype can be complemented only by catalytically competent Ddi1 protease. Furthermore, our data show the key involvement of the helical domain preceding the Ddi1 protease domain in response to replication stress caused by hydroxyurea, offering the first suggestion of this domain's biological function. Overall, our study provides a basis for a novel dual protease-based mechanism enabling yeast cells to counteract DNA replication stress.
- 650 _2
- $a DNA $x metabolismus $7 D004247
- 650 _2
- $a poškození DNA $7 D004249
- 650 _2
- $a oprava DNA $7 D004260
- 650 12
- $a replikace DNA $7 D004261
- 650 _2
- $a hydroxymočovina $x toxicita $7 D006918
- 650 _2
- $a Saccharomyces cerevisiae $x účinky léků $x enzymologie $x genetika $x metabolismus $7 D012441
- 650 _2
- $a Saccharomyces cerevisiae - proteiny $x metabolismus $7 D029701
- 650 _2
- $a signální transdukce $7 D015398
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Konvalinka, Jan $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic; Department of Biochemistry, Charles University, Hlavova 8, 12843, Prague, Czech Republic.
- 700 1_
- $a Trempe, Jean-François $u Centre for Structural Biology and Department of Pharmacology & Therapeutics, McGill University, Montreal, Quebec, Canada.
- 700 1_
- $a Grantz Saskova, Klara $u Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, 16610, Prague, Czech Republic; Department of Genetics and Microbiology, Charles University, Viničná 5, 12843, Prague, Czech Republic. Electronic address: saskova@uochb.cas.cz.
- 773 0_
- $w MED00006619 $t DNA repair $x 1568-7856 $g Roč. 80, č. - (2019), s. 45-51
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31276951 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214131106 $b ABA008
- 999 __
- $a ok $b bmc $g 1596081 $s 1114438
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 80 $c - $d 45-51 $e 20190627 $i 1568-7856 $m DNA repair $n DNA Repair (Amst) $x MED00006619
- LZP __
- $a Pubmed-20201125