• Je něco špatně v tomto záznamu ?

Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens

I. Goffová, R. Vágnerová, V. Peška, M. Franek, K. Havlová, M. Holá, D. Zachová, M. Fojtová, A. Cuming, Y. Kamisugi, KJ. Angelis, J. Fajkus,

. 2019 ; 98 (6) : 1090-1105. [pub] 20190412

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20023927

Grantová podpora
BB/1006710/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action. While the loss of RTEL1 results in rapid telomere shortening, concurrent loss of both RAD51 genes has no effect on telomere lengths. We further demonstrate here the linked arrangement of 5S and 45S rRNA genes in P. patens. The spacer between 5S and 18S rRNA genes, especially the region downstream from the transcription start site, shows conspicuous clustering of sites with a high propensity to form quadruplex (G4) structures. Copy numbers of 5S and 18S rDNA are reduced moderately in the pprtel1 mutant, and significantly in the double pprad51-1-2 mutant, with no progression during subsequent cultivation. While reductions in 45S rDNA copy numbers observed in pprtel1 and pprad51-1-2 plants apply also to 5S rDNA, changes in transcript levels are different for 45S and 5S rRNA, indicating their independent transcription by RNA polymerase I and III, respectively. The loss of SOL (Sog One-Like), a transcription factor regulating numerous genes involved in DSB repair, increases the rate of DSB repair in dividing as well as differentiated tissue, and through deactivation of G2/M cell-cycle checkpoint allows the cell-cycle progression manifested as a phenotype resistant to bleomycin.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20023927
003      
CZ-PrNML
005      
20201214131731.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/tpj.14304 $2 doi
035    __
$a (PubMed)30834585
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Goffová, Ivana $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
245    10
$a Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens / $c I. Goffová, R. Vágnerová, V. Peška, M. Franek, K. Havlová, M. Holá, D. Zachová, M. Fojtová, A. Cuming, Y. Kamisugi, KJ. Angelis, J. Fajkus,
520    9_
$a Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action. While the loss of RTEL1 results in rapid telomere shortening, concurrent loss of both RAD51 genes has no effect on telomere lengths. We further demonstrate here the linked arrangement of 5S and 45S rRNA genes in P. patens. The spacer between 5S and 18S rRNA genes, especially the region downstream from the transcription start site, shows conspicuous clustering of sites with a high propensity to form quadruplex (G4) structures. Copy numbers of 5S and 18S rDNA are reduced moderately in the pprtel1 mutant, and significantly in the double pprad51-1-2 mutant, with no progression during subsequent cultivation. While reductions in 45S rDNA copy numbers observed in pprtel1 and pprad51-1-2 plants apply also to 5S rDNA, changes in transcript levels are different for 45S and 5S rRNA, indicating their independent transcription by RNA polymerase I and III, respectively. The loss of SOL (Sog One-Like), a transcription factor regulating numerous genes involved in DSB repair, increases the rate of DSB repair in dividing as well as differentiated tissue, and through deactivation of G2/M cell-cycle checkpoint allows the cell-cycle progression manifested as a phenotype resistant to bleomycin.
650    _2
$a mechy $x enzymologie $x genetika $7 D019068
650    _2
$a DNA-helikasy $x genetika $x metabolismus $7 D004265
650    _2
$a ribozomální DNA $x genetika $7 D004275
650    _2
$a genetické lokusy $7 D056426
650    12
$a nestabilita genomu $7 D042822
650    _2
$a mutace $7 D009154
650    _2
$a rostlinné proteiny $x genetika $x metabolismus $7 D010940
650    _2
$a RNA ribozomální $x genetika $7 D012335
650    _2
$a RNA ribozomální 18S $x genetika $7 D012337
650    _2
$a RNA ribozomální 5S $x genetika $7 D012341
650    _2
$a rekombinasa Rad51 $x genetika $x metabolismus $7 D051135
650    _2
$a telomery $x genetika $7 D016615
650    _2
$a transkripční faktory $x genetika $x metabolismus $7 D014157
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Vágnerová, Radka $u The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic.
700    1_
$a Peška, Vratislav $u The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic.
700    1_
$a Franek, Michal $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
700    1_
$a Havlová, Kateřina $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
700    1_
$a Holá, Marcela $u The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic.
700    1_
$a Zachová, Dagmar $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
700    1_
$a Fojtová, Miloslava $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
700    1_
$a Cuming, Andrew $u Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
700    1_
$a Kamisugi, Yasuko $u Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
700    1_
$a Angelis, Karel J $u The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic.
700    1_
$a Fajkus, Jiří $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic. The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic.
773    0_
$w MED00003838 $t The Plant journal : for cell and molecular biology $x 1365-313X $g Roč. 98, č. 6 (2019), s. 1090-1105
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30834585 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201214131729 $b ABA008
999    __
$a ok $b bmc $g 1596246 $s 1114603
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 98 $c 6 $d 1090-1105 $e 20190412 $i 1365-313X $m Plant journal $n Plant J $x MED00003838
GRA    __
$a BB/1006710/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...