-
Je něco špatně v tomto záznamu ?
Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens
I. Goffová, R. Vágnerová, V. Peška, M. Franek, K. Havlová, M. Holá, D. Zachová, M. Fojtová, A. Cuming, Y. Kamisugi, KJ. Angelis, J. Fajkus,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/1006710/1
Biotechnology and Biological Sciences Research Council - United Kingdom
NLK
Free Medical Journals
od 1991 do Před 1 rokem
Wiley Free Content
od 1997 do Před 1 rokem
PubMed
30834585
DOI
10.1111/tpj.14304
Knihovny.cz E-zdroje
- MeSH
- DNA-helikasy genetika metabolismus MeSH
- genetické lokusy MeSH
- mechy enzymologie genetika MeSH
- mutace MeSH
- nestabilita genomu * MeSH
- rekombinasa Rad51 genetika metabolismus MeSH
- ribozomální DNA genetika MeSH
- RNA ribozomální 18S genetika MeSH
- RNA ribozomální 5S genetika MeSH
- RNA ribozomální genetika MeSH
- rostlinné proteiny genetika metabolismus MeSH
- telomery genetika MeSH
- transkripční faktory genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action. While the loss of RTEL1 results in rapid telomere shortening, concurrent loss of both RAD51 genes has no effect on telomere lengths. We further demonstrate here the linked arrangement of 5S and 45S rRNA genes in P. patens. The spacer between 5S and 18S rRNA genes, especially the region downstream from the transcription start site, shows conspicuous clustering of sites with a high propensity to form quadruplex (G4) structures. Copy numbers of 5S and 18S rDNA are reduced moderately in the pprtel1 mutant, and significantly in the double pprad51-1-2 mutant, with no progression during subsequent cultivation. While reductions in 45S rDNA copy numbers observed in pprtel1 and pprad51-1-2 plants apply also to 5S rDNA, changes in transcript levels are different for 45S and 5S rRNA, indicating their independent transcription by RNA polymerase I and III, respectively. The loss of SOL (Sog One-Like), a transcription factor regulating numerous genes involved in DSB repair, increases the rate of DSB repair in dividing as well as differentiated tissue, and through deactivation of G2/M cell-cycle checkpoint allows the cell-cycle progression manifested as a phenotype resistant to bleomycin.
Centre for Plant Sciences Faculty of Biological Sciences University of Leeds Leeds LS2 9JT UK
The Czech Academy of Sciences Institute of Biophysics Královopolská 135 612 65 Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20023927
- 003
- CZ-PrNML
- 005
- 20201214131731.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/tpj.14304 $2 doi
- 035 __
- $a (PubMed)30834585
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Goffová, Ivana $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
- 245 10
- $a Roles of RAD51 and RTEL1 in telomere and rDNA stability in Physcomitrella patens / $c I. Goffová, R. Vágnerová, V. Peška, M. Franek, K. Havlová, M. Holá, D. Zachová, M. Fojtová, A. Cuming, Y. Kamisugi, KJ. Angelis, J. Fajkus,
- 520 9_
- $a Telomeres and ribosomal RNA genes (rDNA) are essential for cell survival and particularly sensitive to factors affecting genome stability. Here, we examine the role of RAD51 and its antagonist, RTEL1, in the moss Physcomitrella patens. In corresponding mutants, we analyse their sensitivity to DNA damage, the maintenance of telomeres and rDNA, and repair of double-stranded breaks (DSBs) induced by genotoxins with various modes of action. While the loss of RTEL1 results in rapid telomere shortening, concurrent loss of both RAD51 genes has no effect on telomere lengths. We further demonstrate here the linked arrangement of 5S and 45S rRNA genes in P. patens. The spacer between 5S and 18S rRNA genes, especially the region downstream from the transcription start site, shows conspicuous clustering of sites with a high propensity to form quadruplex (G4) structures. Copy numbers of 5S and 18S rDNA are reduced moderately in the pprtel1 mutant, and significantly in the double pprad51-1-2 mutant, with no progression during subsequent cultivation. While reductions in 45S rDNA copy numbers observed in pprtel1 and pprad51-1-2 plants apply also to 5S rDNA, changes in transcript levels are different for 45S and 5S rRNA, indicating their independent transcription by RNA polymerase I and III, respectively. The loss of SOL (Sog One-Like), a transcription factor regulating numerous genes involved in DSB repair, increases the rate of DSB repair in dividing as well as differentiated tissue, and through deactivation of G2/M cell-cycle checkpoint allows the cell-cycle progression manifested as a phenotype resistant to bleomycin.
- 650 _2
- $a mechy $x enzymologie $x genetika $7 D019068
- 650 _2
- $a DNA-helikasy $x genetika $x metabolismus $7 D004265
- 650 _2
- $a ribozomální DNA $x genetika $7 D004275
- 650 _2
- $a genetické lokusy $7 D056426
- 650 12
- $a nestabilita genomu $7 D042822
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a rostlinné proteiny $x genetika $x metabolismus $7 D010940
- 650 _2
- $a RNA ribozomální $x genetika $7 D012335
- 650 _2
- $a RNA ribozomální 18S $x genetika $7 D012337
- 650 _2
- $a RNA ribozomální 5S $x genetika $7 D012341
- 650 _2
- $a rekombinasa Rad51 $x genetika $x metabolismus $7 D051135
- 650 _2
- $a telomery $x genetika $7 D016615
- 650 _2
- $a transkripční faktory $x genetika $x metabolismus $7 D014157
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Vágnerová, Radka $u The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic.
- 700 1_
- $a Peška, Vratislav $u The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic.
- 700 1_
- $a Franek, Michal $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
- 700 1_
- $a Havlová, Kateřina $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
- 700 1_
- $a Holá, Marcela $u The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic.
- 700 1_
- $a Zachová, Dagmar $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
- 700 1_
- $a Fojtová, Miloslava $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
- 700 1_
- $a Cuming, Andrew $u Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- 700 1_
- $a Kamisugi, Yasuko $u Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- 700 1_
- $a Angelis, Karel J $u The Czech Academy of Sciences, Institute of Experimental Botany, Na Karlovce 1, CZ-16000, Prague, Czech Republic.
- 700 1_
- $a Fajkus, Jiří $u Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, CZ-61137, Brno, Czech Republic. Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic. The Czech Academy of Sciences, Institute of Biophysics, Královopolská 135, 612 65, Brno, Czech Republic.
- 773 0_
- $w MED00003838 $t The Plant journal : for cell and molecular biology $x 1365-313X $g Roč. 98, č. 6 (2019), s. 1090-1105
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/30834585 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201214131729 $b ABA008
- 999 __
- $a ok $b bmc $g 1596246 $s 1114603
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 98 $c 6 $d 1090-1105 $e 20190412 $i 1365-313X $m Plant journal $n Plant J $x MED00003838
- GRA __
- $a BB/1006710/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20201125