-
Je něco špatně v tomto záznamu ?
Classification of First-Episode Schizophrenia Using Wavelet Imaging Features
K. Maršálová, D. Schwarz, I. Provazník,
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
PubMed
32570589
DOI
10.3233/shti200372
Knihovny.cz E-zdroje
- MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- schizofrenie * MeSH
- support vector machine MeSH
- vlnková analýza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
This work explores the design and implementation of an algorithm for the classification of magnetic resonance imaging data for computer-aided diagnosis of schizophrenia. Features for classification were first extracted using two morphometric methods: voxel-based morphometry (VBM) and deformation-based morphometry (DBM). These features were then transformed into a wavelet domain using the discrete wavelet transform with various numbers of decomposition levels. The number of features was then reduced by thresholding and subsequent selection by: Fisher's Discrimination Ratio (FDR), Bhattacharyya Distance, and Variances (Var.). A Support Vector Machine with a linear kernel was used for classification. The evaluation strategy was based on leave-one-out cross-validation.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20024956
- 003
- CZ-PrNML
- 005
- 20201222160041.0
- 007
- ta
- 008
- 201125s2020 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3233/SHTI200372 $2 doi
- 035 __
- $a (PubMed)32570589
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Maršálová, Kateřina $u Masaryk University, Faculty of Medicine, Kamenice 5, 62500 Brno, Czech Republic. Institute of Biostatistics and Analyses, Ltd., Czech Republic.
- 245 10
- $a Classification of First-Episode Schizophrenia Using Wavelet Imaging Features / $c K. Maršálová, D. Schwarz, I. Provazník,
- 520 9_
- $a This work explores the design and implementation of an algorithm for the classification of magnetic resonance imaging data for computer-aided diagnosis of schizophrenia. Features for classification were first extracted using two morphometric methods: voxel-based morphometry (VBM) and deformation-based morphometry (DBM). These features were then transformed into a wavelet domain using the discrete wavelet transform with various numbers of decomposition levels. The number of features was then reduced by thresholding and subsequent selection by: Fisher's Discrimination Ratio (FDR), Bhattacharyya Distance, and Variances (Var.). A Support Vector Machine with a linear kernel was used for classification. The evaluation strategy was based on leave-one-out cross-validation.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a magnetická rezonanční tomografie $7 D008279
- 650 12
- $a schizofrenie $7 D012559
- 650 _2
- $a support vector machine $7 D060388
- 650 _2
- $a vlnková analýza $7 D058067
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Schwarz, Daniel $u Masaryk University, Faculty of Medicine, Kamenice 5, 62500 Brno, Czech Republic. Institute of Biostatistics and Analyses, Ltd., Czech Republic.
- 700 1_
- $a Provazník, Ivo $u Brno University of Technology, Technická 3058/10, 61600 Brno, Czech Republic.
- 773 0_
- $w MED00180836 $t Studies in health technology and informatics $x 1879-8365 $g Roč. 270, č. - (2020), s. 1221-1222
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32570589 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222160037 $b ABA008
- 999 __
- $a ok $b bmc $g 1599101 $s 1115642
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 270 $c - $d 1221-1222 $e 2020Jun16 $i 1879-8365 $m Studies in health technology and informatics $n Stud Health Technol Inform $x MED00180836
- LZP __
- $a Pubmed-20201125