• Je něco špatně v tomto záznamu ?

Classification of First-Episode Schizophrenia Using Wavelet Imaging Features

K. Maršálová, D. Schwarz, I. Provazník,

. 2020 ; 270 (-) : 1221-1222. [pub] 2020Jun16

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc20024956

This work explores the design and implementation of an algorithm for the classification of magnetic resonance imaging data for computer-aided diagnosis of schizophrenia. Features for classification were first extracted using two morphometric methods: voxel-based morphometry (VBM) and deformation-based morphometry (DBM). These features were then transformed into a wavelet domain using the discrete wavelet transform with various numbers of decomposition levels. The number of features was then reduced by thresholding and subsequent selection by: Fisher's Discrimination Ratio (FDR), Bhattacharyya Distance, and Variances (Var.). A Support Vector Machine with a linear kernel was used for classification. The evaluation strategy was based on leave-one-out cross-validation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20024956
003      
CZ-PrNML
005      
20201222160041.0
007      
ta
008      
201125s2020 ne f 000 0|eng||
009      
AR
024    7_
$a 10.3233/SHTI200372 $2 doi
035    __
$a (PubMed)32570589
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Maršálová, Kateřina $u Masaryk University, Faculty of Medicine, Kamenice 5, 62500 Brno, Czech Republic. Institute of Biostatistics and Analyses, Ltd., Czech Republic.
245    10
$a Classification of First-Episode Schizophrenia Using Wavelet Imaging Features / $c K. Maršálová, D. Schwarz, I. Provazník,
520    9_
$a This work explores the design and implementation of an algorithm for the classification of magnetic resonance imaging data for computer-aided diagnosis of schizophrenia. Features for classification were first extracted using two morphometric methods: voxel-based morphometry (VBM) and deformation-based morphometry (DBM). These features were then transformed into a wavelet domain using the discrete wavelet transform with various numbers of decomposition levels. The number of features was then reduced by thresholding and subsequent selection by: Fisher's Discrimination Ratio (FDR), Bhattacharyya Distance, and Variances (Var.). A Support Vector Machine with a linear kernel was used for classification. The evaluation strategy was based on leave-one-out cross-validation.
650    _2
$a lidé $7 D006801
650    _2
$a magnetická rezonanční tomografie $7 D008279
650    12
$a schizofrenie $7 D012559
650    _2
$a support vector machine $7 D060388
650    _2
$a vlnková analýza $7 D058067
655    _2
$a časopisecké články $7 D016428
700    1_
$a Schwarz, Daniel $u Masaryk University, Faculty of Medicine, Kamenice 5, 62500 Brno, Czech Republic. Institute of Biostatistics and Analyses, Ltd., Czech Republic.
700    1_
$a Provazník, Ivo $u Brno University of Technology, Technická 3058/10, 61600 Brno, Czech Republic.
773    0_
$w MED00180836 $t Studies in health technology and informatics $x 1879-8365 $g Roč. 270, č. - (2020), s. 1221-1222
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32570589 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222160037 $b ABA008
999    __
$a ok $b bmc $g 1599101 $s 1115642
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 270 $c - $d 1221-1222 $e 2020Jun16 $i 1879-8365 $m Studies in health technology and informatics $n Stud Health Technol Inform $x MED00180836
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...