-
Something wrong with this record ?
A widespread toxin-antitoxin system exploiting growth control via alarmone signaling
S. Jimmy, CK. Saha, T. Kurata, C. Stavropoulos, SRA. Oliveira, A. Koh, A. Cepauskas, H. Takada, D. Rejman, T. Tenson, H. Strahl, A. Garcia-Pino, V. Hauryliuk, GC. Atkinson,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
BB/S00257X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
NLK
Free Medical Journals
from 1915
Freely Accessible Science Journals
from 1915 to 6 months ago
PubMed Central
from 1915 to 6 months ago
Europe PubMed Central
from 1915 to 6 months ago
Open Access Digital Library
from 1915-01-01
Open Access Digital Library
from 1915-01-15
- MeSH
- Adenine Nucleotides metabolism MeSH
- Bacteria growth & development metabolism MeSH
- Bacterial Proteins metabolism MeSH
- Databases, Genetic MeSH
- Stress, Physiological physiology MeSH
- Guanosine Pentaphosphate metabolism MeSH
- Guanosine Tetraphosphate metabolism MeSH
- Guanosine Triphosphate metabolism MeSH
- Ligases metabolism MeSH
- Pyrophosphatases metabolism MeSH
- Gene Expression Regulation, Bacterial genetics MeSH
- Signal Transduction MeSH
- Toxin-Antitoxin Systems physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Under stressful conditions, bacterial RelA-SpoT Homolog (RSH) enzymes synthesize the alarmone (p)ppGpp, a nucleotide second messenger. (p)ppGpp rewires bacterial transcription and metabolism to cope with stress, and, at high concentrations, inhibits the process of protein synthesis and bacterial growth to save and redirect resources until conditions improve. Single-domain small alarmone synthetases (SASs) are RSH family members that contain the (p)ppGpp synthesis (SYNTH) domain, but lack the hydrolysis (HD) domain and regulatory C-terminal domains of the long RSHs such as Rel, RelA, and SpoT. We asked whether analysis of the genomic context of SASs can indicate possible functional roles. Indeed, multiple SAS subfamilies are encoded in widespread conserved bicistronic operon architectures that are reminiscent of those typically seen in toxin-antitoxin (TA) operons. We have validated five of these SASs as being toxic (toxSASs), with neutralization by the protein products of six neighboring antitoxin genes. The toxicity of Cellulomonas marina toxSAS FaRel is mediated by the accumulation of alarmones ppGpp and ppApp, and an associated depletion of cellular guanosine triphosphate and adenosine triphosphate pools, and is counteracted by its HD domain-containing antitoxin. Thus, the ToxSAS-antiToxSAS system with its multiple different antitoxins exemplifies how ancient nucleotide-based signaling mechanisms can be repurposed as TA modules during evolution, potentially multiple times independently.
Department of Molecular Biology Umeå University 901 87 Umeå Sweden
Institute of Technology University of Tartu 50411 Tartu Estonia
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025016
- 003
- CZ-PrNML
- 005
- 20201222155012.0
- 007
- ta
- 008
- 201125s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.1916617117 $2 doi
- 035 __
- $a (PubMed)32345719
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Jimmy, Steffi $u Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden. Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE-901 87 Umeå, Sweden.
- 245 12
- $a A widespread toxin-antitoxin system exploiting growth control via alarmone signaling / $c S. Jimmy, CK. Saha, T. Kurata, C. Stavropoulos, SRA. Oliveira, A. Koh, A. Cepauskas, H. Takada, D. Rejman, T. Tenson, H. Strahl, A. Garcia-Pino, V. Hauryliuk, GC. Atkinson,
- 520 9_
- $a Under stressful conditions, bacterial RelA-SpoT Homolog (RSH) enzymes synthesize the alarmone (p)ppGpp, a nucleotide second messenger. (p)ppGpp rewires bacterial transcription and metabolism to cope with stress, and, at high concentrations, inhibits the process of protein synthesis and bacterial growth to save and redirect resources until conditions improve. Single-domain small alarmone synthetases (SASs) are RSH family members that contain the (p)ppGpp synthesis (SYNTH) domain, but lack the hydrolysis (HD) domain and regulatory C-terminal domains of the long RSHs such as Rel, RelA, and SpoT. We asked whether analysis of the genomic context of SASs can indicate possible functional roles. Indeed, multiple SAS subfamilies are encoded in widespread conserved bicistronic operon architectures that are reminiscent of those typically seen in toxin-antitoxin (TA) operons. We have validated five of these SASs as being toxic (toxSASs), with neutralization by the protein products of six neighboring antitoxin genes. The toxicity of Cellulomonas marina toxSAS FaRel is mediated by the accumulation of alarmones ppGpp and ppApp, and an associated depletion of cellular guanosine triphosphate and adenosine triphosphate pools, and is counteracted by its HD domain-containing antitoxin. Thus, the ToxSAS-antiToxSAS system with its multiple different antitoxins exemplifies how ancient nucleotide-based signaling mechanisms can be repurposed as TA modules during evolution, potentially multiple times independently.
- 650 _2
- $a adeninnukleotidy $x metabolismus $7 D000227
- 650 _2
- $a Bacteria $x růst a vývoj $x metabolismus $7 D001419
- 650 _2
- $a bakteriální proteiny $x metabolismus $7 D001426
- 650 _2
- $a databáze genetické $7 D030541
- 650 _2
- $a regulace genové exprese u bakterií $x genetika $7 D015964
- 650 _2
- $a guanosinpentafosfát $x metabolismus $7 D006158
- 650 _2
- $a guanosintetrafosfát $x metabolismus $7 D006159
- 650 _2
- $a guanosintrifosfát $x metabolismus $7 D006160
- 650 _2
- $a ligasy $x metabolismus $7 D008025
- 650 _2
- $a pyrofosfatasy $x metabolismus $7 D011755
- 650 _2
- $a signální transdukce $7 D015398
- 650 _2
- $a fyziologický stres $x fyziologie $7 D013312
- 650 _2
- $a systémy toxin-antitoxin $x fyziologie $7 D000075704
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Saha, Chayan Kumar $u Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
- 700 1_
- $a Kurata, Tatsuaki $u Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
- 700 1_
- $a Stavropoulos, Constantine $u Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden.
- 700 1_
- $a Oliveira, Sofia Raquel Alves $u Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
- 700 1_
- $a Koh, Alan $u Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX Newcastle upon Tyne, United Kingdom.
- 700 1_
- $a Cepauskas, Albinas $u Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, 6041 Gosselies, Belgium.
- 700 1_
- $a Takada, Hiraku $u Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden. Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE-901 87 Umeå, Sweden.
- 700 1_
- $a Rejman, Dominik $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, CZ-166 10 Prague 6, Czech Republic.
- 700 1_
- $a Tenson, Tanel $u Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
- 700 1_
- $a Strahl, Henrik $u Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX Newcastle upon Tyne, United Kingdom.
- 700 1_
- $a Garcia-Pino, Abel $u Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles, 6041 Gosselies, Belgium. Walloon Excellence in Life Sciences and Biotechnology, 1200 Brussels, Belgium.
- 700 1_
- $a Hauryliuk, Vasili $u Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; vasili.hauryliuk@umu.se gemma.atkinson@umu.se. Laboratory for Molecular Infection Medicine Sweden, Umeå University, SE-901 87 Umeå, Sweden. Institute of Technology, University of Tartu, 50411 Tartu, Estonia.
- 700 1_
- $a Atkinson, Gemma C $u Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden; vasili.hauryliuk@umu.se gemma.atkinson@umu.se.
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 117, č. 19 (2020), s. 10500-10510
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32345719 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155008 $b ABA008
- 999 __
- $a ok $b bmc $g 1599161 $s 1115702
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 117 $c 19 $d 10500-10510 $e 20200428 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- GRA __
- $a BB/S00257X/1 $p Biotechnology and Biological Sciences Research Council $2 United Kingdom
- LZP __
- $a Pubmed-20201125