-
Something wrong with this record ?
MTV proteins unveil ER- and microtubule-associated compartments in the plant vacuolar trafficking pathway
MO. Delgadillo, G. Ruano, J. Zouhar, M. Sauer, J. Shen, A. Lazarova, M. Sanmartín, LTF. Lai, C. Deng, P. Wang, PJ. Hussey, JJ. Sánchez-Serrano, L. Jiang, E. Rojo,
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1915 to 6 months ago
Freely Accessible Science Journals
from 1915 to 6 months ago
PubMed Central
from 1915 to 6 months ago
Europe PubMed Central
from 1915 to 6 months ago
Open Access Digital Library
from 1915-01-15
Open Access Digital Library
from 1915-01-01
- MeSH
- Alleles MeSH
- Arabidopsis genetics metabolism MeSH
- Cytoplasmic Vesicles genetics metabolism MeSH
- Endoplasmic Reticulum genetics metabolism MeSH
- Golgi Apparatus genetics metabolism MeSH
- Kinesins genetics metabolism MeSH
- Microtubules genetics metabolism MeSH
- Multivesicular Bodies genetics metabolism MeSH
- Mutation MeSH
- Arabidopsis Proteins genetics metabolism MeSH
- Protein Transport genetics MeSH
- Vacuoles genetics metabolism MeSH
- Vesicular Transport Proteins genetics metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The factors and mechanisms involved in vacuolar transport in plants, and in particular those directing vesicles to their target endomembrane compartment, remain largely unknown. To identify components of the vacuolar trafficking machinery, we searched for Arabidopsis modified transport to the vacuole (mtv) mutants that abnormally secrete the synthetic vacuolar cargo VAC2. We report here on the identification of 17 mtv mutations, corresponding to mutant alleles of MTV2/VSR4, MTV3/PTEN2A MTV7/EREL1, MTV8/ARFC1, MTV9/PUF2, MTV10/VPS3, MTV11/VPS15, MTV12/GRV2, MTV14/GFS10, MTV15/BET11, MTV16/VPS51, MTV17/VPS54, and MTV18/VSR1 Eight of the MTV proteins localize at the interface between the trans-Golgi network (TGN) and the multivesicular bodies (MVBs), supporting that the trafficking step between these compartments is essential for segregating vacuolar proteins from those destined for secretion. Importantly, the GARP tethering complex subunits MTV16/VPS51 and MTV17/VPS54 were found at endoplasmic reticulum (ER)- and microtubule-associated compartments (EMACs). Moreover, MTV16/VPS51 interacts with the motor domain of kinesins, suggesting that, in addition to tethering vesicles, the GARP complex may regulate the motors that transport them. Our findings unveil a previously uncharacterized compartment of the plant vacuolar trafficking pathway and support a role for microtubules and kinesins in GARP-dependent transport of soluble vacuolar cargo in plants.
Department of Biosciences Durham University Durham DH1 3LE United Kingdom
State Key Laboratory of Subtropical Silviculture Zhejiang A and F University Hangzhou 311300 China
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025029
- 003
- CZ-PrNML
- 005
- 20201222155027.0
- 007
- ta
- 008
- 201125s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.1919820117 $2 doi
- 035 __
- $a (PubMed)32321832
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Delgadillo, María Otilia $u Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
- 245 10
- $a MTV proteins unveil ER- and microtubule-associated compartments in the plant vacuolar trafficking pathway / $c MO. Delgadillo, G. Ruano, J. Zouhar, M. Sauer, J. Shen, A. Lazarova, M. Sanmartín, LTF. Lai, C. Deng, P. Wang, PJ. Hussey, JJ. Sánchez-Serrano, L. Jiang, E. Rojo,
- 520 9_
- $a The factors and mechanisms involved in vacuolar transport in plants, and in particular those directing vesicles to their target endomembrane compartment, remain largely unknown. To identify components of the vacuolar trafficking machinery, we searched for Arabidopsis modified transport to the vacuole (mtv) mutants that abnormally secrete the synthetic vacuolar cargo VAC2. We report here on the identification of 17 mtv mutations, corresponding to mutant alleles of MTV2/VSR4, MTV3/PTEN2A MTV7/EREL1, MTV8/ARFC1, MTV9/PUF2, MTV10/VPS3, MTV11/VPS15, MTV12/GRV2, MTV14/GFS10, MTV15/BET11, MTV16/VPS51, MTV17/VPS54, and MTV18/VSR1 Eight of the MTV proteins localize at the interface between the trans-Golgi network (TGN) and the multivesicular bodies (MVBs), supporting that the trafficking step between these compartments is essential for segregating vacuolar proteins from those destined for secretion. Importantly, the GARP tethering complex subunits MTV16/VPS51 and MTV17/VPS54 were found at endoplasmic reticulum (ER)- and microtubule-associated compartments (EMACs). Moreover, MTV16/VPS51 interacts with the motor domain of kinesins, suggesting that, in addition to tethering vesicles, the GARP complex may regulate the motors that transport them. Our findings unveil a previously uncharacterized compartment of the plant vacuolar trafficking pathway and support a role for microtubules and kinesins in GARP-dependent transport of soluble vacuolar cargo in plants.
- 650 _2
- $a alely $7 D000483
- 650 _2
- $a Arabidopsis $x genetika $x metabolismus $7 D017360
- 650 _2
- $a proteiny huseníčku $x genetika $x metabolismus $7 D029681
- 650 _2
- $a cytoplazmatické vezikuly $x genetika $x metabolismus $7 D022162
- 650 _2
- $a endoplazmatické retikulum $x genetika $x metabolismus $7 D004721
- 650 _2
- $a Golgiho aparát $x genetika $x metabolismus $7 D006056
- 650 _2
- $a kineziny $x genetika $x metabolismus $7 D016547
- 650 _2
- $a mikrotubuly $x genetika $x metabolismus $7 D008870
- 650 _2
- $a multivezikulární tělíska $x genetika $x metabolismus $7 D057146
- 650 _2
- $a mutace $7 D009154
- 650 _2
- $a transport proteinů $x genetika $7 D021381
- 650 _2
- $a vakuoly $x genetika $x metabolismus $7 D014617
- 650 _2
- $a vezikulární transportní proteiny $x genetika $x metabolismus $7 D033921
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Ruano, Guillermo $u Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
- 700 1_
- $a Zouhar, Jan $u Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain. Central European Institute of Technology, Mendel University in Brno, CZ-61300 Brno, Czech Republic.
- 700 1_
- $a Sauer, Michael $u Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain. Department of Plant Physiology, University of Potsdam, 14476 Potsdam, Germany.
- 700 1_
- $a Shen, Jinbo $u State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
- 700 1_
- $a Lazarova, Aleksandra $u Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
- 700 1_
- $a Sanmartín, Maite $u Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
- 700 1_
- $a Lai, Louis Tung Faat $u Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain. School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- 700 1_
- $a Deng, Cesi $u Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain. School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- 700 1_
- $a Wang, Pengwei $u Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China.
- 700 1_
- $a Hussey, Patrick J $u Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom.
- 700 1_
- $a Sánchez-Serrano, José Juan $u Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
- 700 1_
- $a Jiang, Liwen $u School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
- 700 1_
- $a Rojo, Enrique $u Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain; erojo@cnb.csic.es.
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 117, č. 18 (2020), s. 9884-9895
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32321832 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155023 $b ABA008
- 999 __
- $a ok $b bmc $g 1599174 $s 1115715
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 117 $c 18 $d 9884-9895 $e 20200422 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- LZP __
- $a Pubmed-20201125