Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome

MW. Gray, G. Burger, R. Derelle, V. Klimeš, MM. Leger, M. Sarrasin, Č. Vlček, AJ. Roger, M. Eliáš, BF. Lang,

. 2020 ; 18 (1) : 22. [pub] 20200302

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025150

Grantová podpora
MOP-4124 CIHR - Canada
MOP-11212 CIHR - Canada

BACKGROUND: Comparative analyses have indicated that the mitochondrion of the last eukaryotic common ancestor likely possessed all the key core structures and functions that are widely conserved throughout the domain Eucarya. To date, such studies have largely focused on animals, fungi, and land plants (primarily multicellular eukaryotes); relatively few mitochondrial proteomes from protists (primarily unicellular eukaryotic microbes) have been examined. To gauge the full extent of mitochondrial structural and functional complexity and to identify potential evolutionary trends in mitochondrial proteomes, more comprehensive explorations of phylogenetically diverse mitochondrial proteomes are required. In this regard, a key group is the jakobids, a clade of protists belonging to the eukaryotic supergroup Discoba, distinguished by having the most gene-rich and most bacteria-like mitochondrial genomes discovered to date. RESULTS: In this study, we assembled the draft nuclear genome sequence for the jakobid Andalucia godoyi and used a comprehensive in silico approach to infer the nucleus-encoded portion of the mitochondrial proteome of this protist, identifying 864 candidate mitochondrial proteins. The A. godoyi mitochondrial proteome has a complexity that parallels that of other eukaryotes, while exhibiting an unusually large number of ancestral features that have been lost particularly in opisthokont (animal and fungal) mitochondria. Notably, we find no evidence that the A. godoyi nuclear genome has or had a gene encoding a single-subunit, T3/T7 bacteriophage-like RNA polymerase, which functions as the mitochondrial transcriptase in all eukaryotes except the jakobids. CONCLUSIONS: As genome and mitochondrial proteome data have become more widely available, a strikingly punctuate phylogenetic distribution of different mitochondrial components has been revealed, emphasizing that the pathways of mitochondrial proteome evolution are likely complex and lineage-specific. Unraveling this complexity will require comprehensive comparative analyses of mitochondrial proteomes from a phylogenetically broad range of eukaryotes, especially protists. The systematic in silico approach described here offers a valuable adjunct to direct proteomic analysis (e.g., via mass spectrometry), particularly in cases where the latter approach is constrained by sample limitation or other practical considerations.

000      
00000naa a2200000 a 4500
001      
bmc20025150
003      
CZ-PrNML
005      
20201222153721.0
007      
ta
008      
201125s2020 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12915-020-0741-6 $2 doi
035    __
$a (PubMed)32122349
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Gray, Michael W $u Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada. m.w.gray@dal.ca.
245    14
$a The draft nuclear genome sequence and predicted mitochondrial proteome of Andalucia godoyi, a protist with the most gene-rich and bacteria-like mitochondrial genome / $c MW. Gray, G. Burger, R. Derelle, V. Klimeš, MM. Leger, M. Sarrasin, Č. Vlček, AJ. Roger, M. Eliáš, BF. Lang,
520    9_
$a BACKGROUND: Comparative analyses have indicated that the mitochondrion of the last eukaryotic common ancestor likely possessed all the key core structures and functions that are widely conserved throughout the domain Eucarya. To date, such studies have largely focused on animals, fungi, and land plants (primarily multicellular eukaryotes); relatively few mitochondrial proteomes from protists (primarily unicellular eukaryotic microbes) have been examined. To gauge the full extent of mitochondrial structural and functional complexity and to identify potential evolutionary trends in mitochondrial proteomes, more comprehensive explorations of phylogenetically diverse mitochondrial proteomes are required. In this regard, a key group is the jakobids, a clade of protists belonging to the eukaryotic supergroup Discoba, distinguished by having the most gene-rich and most bacteria-like mitochondrial genomes discovered to date. RESULTS: In this study, we assembled the draft nuclear genome sequence for the jakobid Andalucia godoyi and used a comprehensive in silico approach to infer the nucleus-encoded portion of the mitochondrial proteome of this protist, identifying 864 candidate mitochondrial proteins. The A. godoyi mitochondrial proteome has a complexity that parallels that of other eukaryotes, while exhibiting an unusually large number of ancestral features that have been lost particularly in opisthokont (animal and fungal) mitochondria. Notably, we find no evidence that the A. godoyi nuclear genome has or had a gene encoding a single-subunit, T3/T7 bacteriophage-like RNA polymerase, which functions as the mitochondrial transcriptase in all eukaryotes except the jakobids. CONCLUSIONS: As genome and mitochondrial proteome data have become more widely available, a strikingly punctuate phylogenetic distribution of different mitochondrial components has been revealed, emphasizing that the pathways of mitochondrial proteome evolution are likely complex and lineage-specific. Unraveling this complexity will require comprehensive comparative analyses of mitochondrial proteomes from a phylogenetically broad range of eukaryotes, especially protists. The systematic in silico approach described here offers a valuable adjunct to direct proteomic analysis (e.g., via mass spectrometry), particularly in cases where the latter approach is constrained by sample limitation or other practical considerations.
650    _2
$a buněčné jádro $x genetika $7 D002467
650    _2
$a Eukaryota $x genetika $7 D056890
650    12
$a genom mitochondriální $7 D054629
650    _2
$a mitochondriální proteiny $x genetika $x metabolismus $7 D024101
650    12
$a proteom $7 D020543
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Burger, Gertraud $u Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada.
700    1_
$a Derelle, Romain $u School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
700    1_
$a Klimeš, Vladimír $u Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Leger, Michelle M $u Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada. Institute of Evolutionary Biology (CSIC-UPF), Barcelona, Spain.
700    1_
$a Sarrasin, Matt $u Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada.
700    1_
$a Vlček, Čestmír $u Current address: Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
700    1_
$a Roger, Andrew J $u Department of Biochemistry and Molecular Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Sir Charles Tupper Medical Building, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, B3H 4R2, Canada.
700    1_
$a Eliáš, Marek $u Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
700    1_
$a Lang, B Franz $u Département de Biochimie and Robert-Cedergren Center for Bioinformatics and Genomics, Université de Montréal, Montréal, QC, Canada.
773    0_
$w MED00008168 $t BMC biology $x 1741-7007 $g Roč. 18, č. 1 (2020), s. 22
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32122349 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222153717 $b ABA008
999    __
$a ok $b bmc $g 1599295 $s 1115836
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 18 $c 1 $d 22 $e 20200302 $i 1741-7007 $m BMC biology $n BMC Biol $x MED00008168
GRA    __
$a MOP-4124 $p CIHR $2 Canada
GRA    __
$a MOP-11212 $p CIHR $2 Canada
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...