-
Je něco špatně v tomto záznamu ?
Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry
M. Vala, CT. Ertsgaard, NJ. Wittenberg, SH. Oh,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
- MeSH
- biosenzitivní techniky metody MeSH
- fosfatidylcholiny chemie MeSH
- limita detekce MeSH
- liposomy analýza chemie MeSH
- nanopóry * MeSH
- oxid hlinitý chemie MeSH
- povrchová plasmonová rezonance metody MeSH
- sérový albumin hovězí analýza MeSH
- skot MeSH
- zlato chemie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Refractometric sensors utilizing surface plasmon resonance (SPR) should satisfy a series of performance metrics, bulk sensitivity, thin-film sensitivity, refractive-index resolution, and high-Q-factor resonance, as well as practical requirements such as manufacturability and the ability to separate optical and fluidic paths via reflection-mode sensing. While many geometries such as nanohole, nanoslit, and nanoparticles have been employed, it is nontrivial to engineer nanostructures to satisfy all of the aforementioned requirements. We combine gold nanohole arrays with a water-index-matched Cytop film to demonstrate reflection-mode, high-Q-factor (Qexp = 143) symmetric plasmonic sensor architecture. Using template stripping with a Cytop film, we can replicate a large number of index-symmetric nanohole arrays, which support sharp plasmonic resonances that can be probed by light reflected from their backside with a high extinction amplitude. The reflection geometry separates the optical and microfluidic paths without sacrificing sensor performance as is the case of standard (index-asymmetric) nanohole arrays. Furthermore, plasmon hybridization caused by the array refractive-index symmetry enables dual-mode detection that allows distinction of refractive-index changes occurring at different distances from the surface, making it possible to identify SPR response from differently sized particles or to distinguish binding events near the surface from bulk index changes. Due to the unique combination of a dual-mode reflection-configuration sensing, high-Q plasmonic modes, and template-stripping nanofabrication, this platform can extend the utility of nanohole SPR for sensing applications involving biomolecules, polymers, nanovesicles, and biomembranes.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025385
- 003
- CZ-PrNML
- 005
- 20201222155154.0
- 007
- ta
- 008
- 201125s2019 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1021/acssensors.9b01780 $2 doi
- 035 __
- $a (PubMed)31762262
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Vala, Milan $u Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States. Institute of Photonics and Electronics , Czech Academy of Sciences , 18251 Prague , Czech Republic.
- 245 10
- $a Plasmonic Sensing on Symmetric Nanohole Arrays Supporting High-Q Hybrid Modes and Reflection Geometry / $c M. Vala, CT. Ertsgaard, NJ. Wittenberg, SH. Oh,
- 520 9_
- $a Refractometric sensors utilizing surface plasmon resonance (SPR) should satisfy a series of performance metrics, bulk sensitivity, thin-film sensitivity, refractive-index resolution, and high-Q-factor resonance, as well as practical requirements such as manufacturability and the ability to separate optical and fluidic paths via reflection-mode sensing. While many geometries such as nanohole, nanoslit, and nanoparticles have been employed, it is nontrivial to engineer nanostructures to satisfy all of the aforementioned requirements. We combine gold nanohole arrays with a water-index-matched Cytop film to demonstrate reflection-mode, high-Q-factor (Qexp = 143) symmetric plasmonic sensor architecture. Using template stripping with a Cytop film, we can replicate a large number of index-symmetric nanohole arrays, which support sharp plasmonic resonances that can be probed by light reflected from their backside with a high extinction amplitude. The reflection geometry separates the optical and microfluidic paths without sacrificing sensor performance as is the case of standard (index-asymmetric) nanohole arrays. Furthermore, plasmon hybridization caused by the array refractive-index symmetry enables dual-mode detection that allows distinction of refractive-index changes occurring at different distances from the surface, making it possible to identify SPR response from differently sized particles or to distinguish binding events near the surface from bulk index changes. Due to the unique combination of a dual-mode reflection-configuration sensing, high-Q plasmonic modes, and template-stripping nanofabrication, this platform can extend the utility of nanohole SPR for sensing applications involving biomolecules, polymers, nanovesicles, and biomembranes.
- 650 _2
- $a oxid hlinitý $x chemie $7 D000537
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a biosenzitivní techniky $x metody $7 D015374
- 650 _2
- $a skot $7 D002417
- 650 _2
- $a zlato $x chemie $7 D006046
- 650 _2
- $a limita detekce $7 D057230
- 650 _2
- $a liposomy $x analýza $x chemie $7 D008081
- 650 12
- $a nanopóry $7 D058608
- 650 _2
- $a fosfatidylcholiny $x chemie $7 D010713
- 650 _2
- $a sérový albumin hovězí $x analýza $7 D012710
- 650 _2
- $a povrchová plasmonová rezonance $x metody $7 D020349
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Ertsgaard, Christopher T $u Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States.
- 700 1_
- $a Wittenberg, Nathan J $u Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States. Department of Chemistry , Lehigh University , Bethlehem , Pennsylvania 18015 , United States.
- 700 1_
- $a Oh, Sang-Hyun $u Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States.
- 773 0_
- $w MED00201228 $t ACS sensors $x 2379-3694 $g Roč. 4, č. 12 (2019), s. 3265-3274
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31762262 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222155150 $b ABA008
- 999 __
- $a ok $b bmc $g 1599530 $s 1116071
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 4 $c 12 $d 3265-3274 $e 20191209 $i 2379-3694 $m ACS sensors $n ACS Sens $x MED00201228
- LZP __
- $a Pubmed-20201125