Refractometric sensors utilizing surface plasmon resonance (SPR) should satisfy a series of performance metrics, bulk sensitivity, thin-film sensitivity, refractive-index resolution, and high-Q-factor resonance, as well as practical requirements such as manufacturability and the ability to separate optical and fluidic paths via reflection-mode sensing. While many geometries such as nanohole, nanoslit, and nanoparticles have been employed, it is nontrivial to engineer nanostructures to satisfy all of the aforementioned requirements. We combine gold nanohole arrays with a water-index-matched Cytop film to demonstrate reflection-mode, high-Q-factor (Qexp = 143) symmetric plasmonic sensor architecture. Using template stripping with a Cytop film, we can replicate a large number of index-symmetric nanohole arrays, which support sharp plasmonic resonances that can be probed by light reflected from their backside with a high extinction amplitude. The reflection geometry separates the optical and microfluidic paths without sacrificing sensor performance as is the case of standard (index-asymmetric) nanohole arrays. Furthermore, plasmon hybridization caused by the array refractive-index symmetry enables dual-mode detection that allows distinction of refractive-index changes occurring at different distances from the surface, making it possible to identify SPR response from differently sized particles or to distinguish binding events near the surface from bulk index changes. Due to the unique combination of a dual-mode reflection-configuration sensing, high-Q plasmonic modes, and template-stripping nanofabrication, this platform can extend the utility of nanohole SPR for sensing applications involving biomolecules, polymers, nanovesicles, and biomembranes.
- MeSH
- biosenzitivní techniky metody MeSH
- fosfatidylcholiny chemie MeSH
- limita detekce MeSH
- liposomy analýza chemie MeSH
- nanopóry * MeSH
- oxid hlinitý chemie MeSH
- povrchová plasmonová rezonance metody MeSH
- sérový albumin hovězí analýza MeSH
- skot MeSH
- zlato chemie MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Direct drug delivery to the cochlea is associated with the risk of irreversible damage to the ear. In this study, liposome and polymersome nanoparticles (NPs), both formed from amphiphilic molecules (lipids in liposomes and block copolymers in polymersomes), were tested as potential tools for drug delivery to the cochlea via application onto the round window membrane in adult mice (strain C3H). One day after round window membrane application, both types of NPs labeled with fluorescent markers were identified in the spiral ganglion in all cochlear turns without producing any distinct morphological or functional damage to the inner ear. NPs were detected, although to a lesser extent, in the organ of Corti and the lateral wall. The potential of liposome and polymersome NPs as therapeutic delivery systems into the cochlea via the round window membrane was evaluated using disulfiram, a neurotoxic agent, as a model payload. Disulfiram-loaded NP delivery resulted in a significant decrease in the number of spiral ganglion cells starting 2 days postapplication, with associated pronounced hearing loss reaching 20-35 dB 2 weeks postapplication as assessed through auditory brainstem responses. No changes in hair cell morphology and function (as assessed by recording otoacoustic emissions) were detected after disulfiram-loaded NP application. No effects were observed in controls where solution of free disulfiram was similarly administered. The results demonstrate that liposome and polymersome NPs are capable of carrying a payload into the inner ear that elicits a biological effect, with consequences measurable by a functional readout.
- MeSH
- apoptóza účinky léků MeSH
- Cortiho orgán účinky léků ultrastruktura MeSH
- cytotoxiny aplikace a dávkování farmakologie MeSH
- disulfiram aplikace a dávkování farmakologie MeSH
- fenestra rotunda účinky léků metabolismus ultrastruktura MeSH
- ganglion spirale cytologie účinky léků MeSH
- kaspasa 3 metabolismus MeSH
- kochlea účinky léků metabolismus ultrastruktura MeSH
- liposomy analýza MeSH
- myši MeSH
- nanočástice analýza MeSH
- povrchově aktivní látky chemie MeSH
- systémy cílené aplikace léků metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH