-
Je něco špatně v tomto záznamu ?
Life at High Latitudes Does Not Require Circadian Behavioral Rhythmicity under Constant Darkness
E. Bertolini, FK. Schubert, D. Zanini, H. Sehadová, C. Helfrich-Förster, P. Menegazzi,
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Cell Press Free Archives
od 1995-01-01 do Před 1 rokem
Free Medical Journals
od 1995 do Před 1 rokem
- MeSH
- cirkadiánní hodiny genetika fyziologie MeSH
- cirkadiánní rytmus fyziologie MeSH
- Drosophila fyziologie MeSH
- Drosophilidae genetika fyziologie MeSH
- fenotyp MeSH
- fotoperioda MeSH
- fyziologická adaptace fyziologie MeSH
- kryptochromy fyziologie MeSH
- lokomoce fyziologie MeSH
- nadmořská výška MeSH
- neurony fyziologie MeSH
- pohybová aktivita fyziologie MeSH
- proteiny Drosophily metabolismus MeSH
- tma MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nearly all organisms evolved endogenous self-sustained timekeeping mechanisms to track and anticipate cyclic changes in the environment. Circadian clocks, with a periodicity of about 24 h, allow animals to adapt to day-night cycles. Biological clocks are highly adaptive, but strong behavioral rhythms might be a disadvantage for adaptation to weakly rhythmic environments such as polar areas [1, 2]. Several high-latitude species, including Drosophila species, were found to be highly arrhythmic under constant conditions [3-6]. Furthermore, Drosophila species from subarctic regions can extend evening activity until dusk under long days. These traits depend on the clock network neurochemistry, and we previously proposed that high-latitude Drosophila species evolved specific clock adaptations to colonize polar regions [5, 7, 8]. We broadened our analysis to 3 species of the Chymomyza genus, which diverged circa 5 million years before the Drosophila radiation [9] and colonized both low and high latitudes [10, 11]. C. costata, pararufithorax, and procnemis, independently of their latitude of origin, possess the clock neuronal network of low-latitude Drosophila species, and their locomotor activity does not track dusk under long photoperiods. Nevertheless, the high-latitude C. costata becomes arrhythmic under constant darkness (DD), whereas the two low-latitude species remain rhythmic. Different mechanisms are behind the arrhythmicity in DD of C. costata and the high-latitude Drosophila ezoana, suggesting that the ability to maintain behavioral rhythms has been lost more than once during drosophilids' evolution and that it might indeed be an evolutionary adaptation for life at high latitudes.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025493
- 003
- CZ-PrNML
- 005
- 20201222153927.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cub.2019.09.032 $2 doi
- 035 __
- $a (PubMed)31679928
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Bertolini, Enrico $u Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany.
- 245 10
- $a Life at High Latitudes Does Not Require Circadian Behavioral Rhythmicity under Constant Darkness / $c E. Bertolini, FK. Schubert, D. Zanini, H. Sehadová, C. Helfrich-Förster, P. Menegazzi,
- 520 9_
- $a Nearly all organisms evolved endogenous self-sustained timekeeping mechanisms to track and anticipate cyclic changes in the environment. Circadian clocks, with a periodicity of about 24 h, allow animals to adapt to day-night cycles. Biological clocks are highly adaptive, but strong behavioral rhythms might be a disadvantage for adaptation to weakly rhythmic environments such as polar areas [1, 2]. Several high-latitude species, including Drosophila species, were found to be highly arrhythmic under constant conditions [3-6]. Furthermore, Drosophila species from subarctic regions can extend evening activity until dusk under long days. These traits depend on the clock network neurochemistry, and we previously proposed that high-latitude Drosophila species evolved specific clock adaptations to colonize polar regions [5, 7, 8]. We broadened our analysis to 3 species of the Chymomyza genus, which diverged circa 5 million years before the Drosophila radiation [9] and colonized both low and high latitudes [10, 11]. C. costata, pararufithorax, and procnemis, independently of their latitude of origin, possess the clock neuronal network of low-latitude Drosophila species, and their locomotor activity does not track dusk under long photoperiods. Nevertheless, the high-latitude C. costata becomes arrhythmic under constant darkness (DD), whereas the two low-latitude species remain rhythmic. Different mechanisms are behind the arrhythmicity in DD of C. costata and the high-latitude Drosophila ezoana, suggesting that the ability to maintain behavioral rhythms has been lost more than once during drosophilids' evolution and that it might indeed be an evolutionary adaptation for life at high latitudes.
- 650 _2
- $a fyziologická adaptace $x fyziologie $7 D000222
- 650 _2
- $a nadmořská výška $7 D000531
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a cirkadiánní hodiny $x genetika $x fyziologie $7 D057906
- 650 _2
- $a cirkadiánní rytmus $x fyziologie $7 D002940
- 650 _2
- $a kryptochromy $x fyziologie $7 D056931
- 650 _2
- $a tma $7 D003624
- 650 _2
- $a Drosophila $x fyziologie $7 D004330
- 650 _2
- $a proteiny Drosophily $x metabolismus $7 D029721
- 650 _2
- $a Drosophilidae $x genetika $x fyziologie $7 D018428
- 650 _2
- $a lokomoce $x fyziologie $7 D008124
- 650 _2
- $a pohybová aktivita $x fyziologie $7 D009043
- 650 _2
- $a neurony $x fyziologie $7 D009474
- 650 _2
- $a fenotyp $7 D010641
- 650 _2
- $a fotoperioda $7 D017440
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Schubert, Frank K $u Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany.
- 700 1_
- $a Zanini, Damiano $u Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany.
- 700 1_
- $a Sehadová, Hana $u Faculty of Science, Biology Centre of the Czech Academy of Sciences, Institute of Entomology and University of South Bohemia, 37005 Ceske Budejovice, Czech Republic.
- 700 1_
- $a Helfrich-Förster, Charlotte $u Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany.
- 700 1_
- $a Menegazzi, Pamela $u Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany. Electronic address: pamela.menegazzi@uni-wuerzburg.de.
- 773 0_
- $w MED00006482 $t Current biology : CB $x 1879-0445 $g Roč. 29, č. 22 (2019), s. 3928-3936.e3
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31679928 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222153923 $b ABA008
- 999 __
- $a ok $b bmc $g 1599638 $s 1116179
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 29 $c 22 $d 3928-3936.e3 $e 20191031 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
- LZP __
- $a Pubmed-20201125