Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Life at High Latitudes Does Not Require Circadian Behavioral Rhythmicity under Constant Darkness

E. Bertolini, FK. Schubert, D. Zanini, H. Sehadová, C. Helfrich-Förster, P. Menegazzi,

. 2019 ; 29 (22) : 3928-3936.e3. [pub] 20191031

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025493

Nearly all organisms evolved endogenous self-sustained timekeeping mechanisms to track and anticipate cyclic changes in the environment. Circadian clocks, with a periodicity of about 24 h, allow animals to adapt to day-night cycles. Biological clocks are highly adaptive, but strong behavioral rhythms might be a disadvantage for adaptation to weakly rhythmic environments such as polar areas [1, 2]. Several high-latitude species, including Drosophila species, were found to be highly arrhythmic under constant conditions [3-6]. Furthermore, Drosophila species from subarctic regions can extend evening activity until dusk under long days. These traits depend on the clock network neurochemistry, and we previously proposed that high-latitude Drosophila species evolved specific clock adaptations to colonize polar regions [5, 7, 8]. We broadened our analysis to 3 species of the Chymomyza genus, which diverged circa 5 million years before the Drosophila radiation [9] and colonized both low and high latitudes [10, 11]. C. costata, pararufithorax, and procnemis, independently of their latitude of origin, possess the clock neuronal network of low-latitude Drosophila species, and their locomotor activity does not track dusk under long photoperiods. Nevertheless, the high-latitude C. costata becomes arrhythmic under constant darkness (DD), whereas the two low-latitude species remain rhythmic. Different mechanisms are behind the arrhythmicity in DD of C. costata and the high-latitude Drosophila ezoana, suggesting that the ability to maintain behavioral rhythms has been lost more than once during drosophilids' evolution and that it might indeed be an evolutionary adaptation for life at high latitudes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025493
003      
CZ-PrNML
005      
20201222153927.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cub.2019.09.032 $2 doi
035    __
$a (PubMed)31679928
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Bertolini, Enrico $u Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany.
245    10
$a Life at High Latitudes Does Not Require Circadian Behavioral Rhythmicity under Constant Darkness / $c E. Bertolini, FK. Schubert, D. Zanini, H. Sehadová, C. Helfrich-Förster, P. Menegazzi,
520    9_
$a Nearly all organisms evolved endogenous self-sustained timekeeping mechanisms to track and anticipate cyclic changes in the environment. Circadian clocks, with a periodicity of about 24 h, allow animals to adapt to day-night cycles. Biological clocks are highly adaptive, but strong behavioral rhythms might be a disadvantage for adaptation to weakly rhythmic environments such as polar areas [1, 2]. Several high-latitude species, including Drosophila species, were found to be highly arrhythmic under constant conditions [3-6]. Furthermore, Drosophila species from subarctic regions can extend evening activity until dusk under long days. These traits depend on the clock network neurochemistry, and we previously proposed that high-latitude Drosophila species evolved specific clock adaptations to colonize polar regions [5, 7, 8]. We broadened our analysis to 3 species of the Chymomyza genus, which diverged circa 5 million years before the Drosophila radiation [9] and colonized both low and high latitudes [10, 11]. C. costata, pararufithorax, and procnemis, independently of their latitude of origin, possess the clock neuronal network of low-latitude Drosophila species, and their locomotor activity does not track dusk under long photoperiods. Nevertheless, the high-latitude C. costata becomes arrhythmic under constant darkness (DD), whereas the two low-latitude species remain rhythmic. Different mechanisms are behind the arrhythmicity in DD of C. costata and the high-latitude Drosophila ezoana, suggesting that the ability to maintain behavioral rhythms has been lost more than once during drosophilids' evolution and that it might indeed be an evolutionary adaptation for life at high latitudes.
650    _2
$a fyziologická adaptace $x fyziologie $7 D000222
650    _2
$a nadmořská výška $7 D000531
650    _2
$a zvířata $7 D000818
650    _2
$a cirkadiánní hodiny $x genetika $x fyziologie $7 D057906
650    _2
$a cirkadiánní rytmus $x fyziologie $7 D002940
650    _2
$a kryptochromy $x fyziologie $7 D056931
650    _2
$a tma $7 D003624
650    _2
$a Drosophila $x fyziologie $7 D004330
650    _2
$a proteiny Drosophily $x metabolismus $7 D029721
650    _2
$a Drosophilidae $x genetika $x fyziologie $7 D018428
650    _2
$a lokomoce $x fyziologie $7 D008124
650    _2
$a pohybová aktivita $x fyziologie $7 D009043
650    _2
$a neurony $x fyziologie $7 D009474
650    _2
$a fenotyp $7 D010641
650    _2
$a fotoperioda $7 D017440
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Schubert, Frank K $u Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany.
700    1_
$a Zanini, Damiano $u Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany.
700    1_
$a Sehadová, Hana $u Faculty of Science, Biology Centre of the Czech Academy of Sciences, Institute of Entomology and University of South Bohemia, 37005 Ceske Budejovice, Czech Republic.
700    1_
$a Helfrich-Förster, Charlotte $u Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany.
700    1_
$a Menegazzi, Pamela $u Neurobiology and Genetics, Theodor Boveri Institute, Biocentre, University of Würzburg, 97074 Würzburg, Germany. Electronic address: pamela.menegazzi@uni-wuerzburg.de.
773    0_
$w MED00006482 $t Current biology : CB $x 1879-0445 $g Roč. 29, č. 22 (2019), s. 3928-3936.e3
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31679928 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222153923 $b ABA008
999    __
$a ok $b bmc $g 1599638 $s 1116179
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 29 $c 22 $d 3928-3936.e3 $e 20191031 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...