• Je něco špatně v tomto záznamu ?

Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining

K. Vougas, T. Sakellaropoulos, A. Kotsinas, GP. Foukas, A. Ntargaras, F. Koinis, A. Polyzos, V. Myrianthopoulos, H. Zhou, S. Narang, V. Georgoulias, L. Alexopoulos, I. Aifantis, PA. Townsend, P. Sfikakis, R. Fitzgerald, D. Thanos, J. Bartek, R....

. 2019 ; 203 (-) : 107395. [pub] 20190730

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/bmc20025556

Grantová podpora
P30 CA016087 NCI NIH HHS - United States

A major challenge in cancer treatment is predicting the clinical response to anti-cancer drugs on a personalized basis. The success of such a task largely depends on the ability to develop computational resources that integrate big "omic" data into effective drug-response models. Machine learning is both an expanding and an evolving computational field that holds promise to cover such needs. Here we provide a focused overview of: 1) the various supervised and unsupervised algorithms used specifically in drug response prediction applications, 2) the strategies employed to develop these algorithms into applicable models, 3) data resources that are fed into these frameworks and 4) pitfalls and challenges to maximize model performance. In this context we also describe a novel in silico screening process, based on Association Rule Mining, for identifying genes as candidate drivers of drug response and compare it with relevant data mining frameworks, for which we generated a web application freely available at: https://compbio.nyumc.org/drugs/. This pipeline explores with high efficiency large sample-spaces, while is able to detect low frequency events and evaluate statistical significance even in the multidimensional space, presenting the results in the form of easily interpretable rules. We conclude with future prospects and challenges of applying machine learning based drug response prediction in precision medicine.

1st Department of Propaedeutic Internal Medicine Medical School Laikon Hospital National and Kapodistrian University of Athens 75 Mikras Asias Str Athens GR 11527 Greece

Applied Bioinformatics Laboratories NYU School of Medicine New York NY 10016 USA

Biomedical Research Foundation of the Academy of Athens 4 Soranou Ephessiou Str Athens GR 11527 Greece

Center for New Biotechnologies and Precision Medicine Medical School National and Kapodistrian University of Athens 75 Mikras Asias Str Athens GR 11527 Greece

Department of Pathology NYU School of Medicine New York NY 10016 USA

Division of Cancer Sciences Faculty of Biology Medicine and Health Manchester Academic Health Science Centre Manchester Cancer Research Centre NIHR Manchester Biomedical Research Centre University of Manchester Manchester M20 4GJ UK

Division of Molecular and Clinical Medicine Ninewells Hospital and School of Medicine University of Dundee Dundee DD1 9SY Scotland

Division of Pharmaceutical Chemistry School of Pharmacy National and Kapodistrian University of Athens Athens Greece

Genome Integrity Unit Danish Cancer Society Research Centre Strandboulevarden 49 Copenhagen DK 2100 Denmark

Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry Palacky University Hněvotínská Olomouc 1333 5 779 00 Czech Republic

Laboratory of Tumour Cell Biology School of Medicine University of Crete Heraklion Crete Greece

Laura and Isaac Perlmutter Cancer Center NYU School of Medicine New York NY 10016 USA

Medical Research Council Cancer Unit Hutchison Medical Research Council Research Centre University of Cambridge Cambridge UK

Molecular Carcinogenesis Group Department of Histology and Embryology School of Medicine National and Kapodistrian University of Athens 75 Mikras Asias Str Athens GR 11527 Greece

Sanford 1 Weill Department of Medicine Sandra and Edward Meyer Cancer Center Weill Cornell Medicine New York NY 10021 USA

School of Mechanical Engineering National Technical University of Athens Zografou 15780 Greece

Science for Life Laboratory Division of Translational Medicine and Chemical Biology Department of Medical Biochemistry and Biophysics Karolinska Institute Stockholm SE 171 77 Sweden

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025556
003      
CZ-PrNML
005      
20231109124602.0
007      
ta
008      
201125s2019 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.pharmthera.2019.107395 $2 doi
035    __
$a (PubMed)31374225
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Vougas, Konstantinos $u Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., Athens GR-11527, Greece; Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens GR-11527, Greece.
245    10
$a Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining / $c K. Vougas, T. Sakellaropoulos, A. Kotsinas, GP. Foukas, A. Ntargaras, F. Koinis, A. Polyzos, V. Myrianthopoulos, H. Zhou, S. Narang, V. Georgoulias, L. Alexopoulos, I. Aifantis, PA. Townsend, P. Sfikakis, R. Fitzgerald, D. Thanos, J. Bartek, R. Petty, A. Tsirigos, VG. Gorgoulis,
520    9_
$a A major challenge in cancer treatment is predicting the clinical response to anti-cancer drugs on a personalized basis. The success of such a task largely depends on the ability to develop computational resources that integrate big "omic" data into effective drug-response models. Machine learning is both an expanding and an evolving computational field that holds promise to cover such needs. Here we provide a focused overview of: 1) the various supervised and unsupervised algorithms used specifically in drug response prediction applications, 2) the strategies employed to develop these algorithms into applicable models, 3) data resources that are fed into these frameworks and 4) pitfalls and challenges to maximize model performance. In this context we also describe a novel in silico screening process, based on Association Rule Mining, for identifying genes as candidate drivers of drug response and compare it with relevant data mining frameworks, for which we generated a web application freely available at: https://compbio.nyumc.org/drugs/. This pipeline explores with high efficiency large sample-spaces, while is able to detect low frequency events and evaluate statistical significance even in the multidimensional space, presenting the results in the form of easily interpretable rules. We conclude with future prospects and challenges of applying machine learning based drug response prediction in precision medicine.
650    _2
$a zvířata $7 D000818
650    _2
$a počítačová simulace $7 D003198
650    12
$a data mining $7 D057225
650    _2
$a lidé $7 D006801
650    12
$a strojové učení $7 D000069550
650    _2
$a nádory $x farmakoterapie $7 D009369
650    _2
$a výsledek terapie $7 D016896
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a přehledy $7 D016454
700    1_
$a Sakellaropoulos, Theodore $u Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
700    1_
$a Kotsinas, Athanassios $u Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens GR-11527, Greece.
700    1_
$a Foukas, George-Romanos P $u Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens GR-11527, Greece.
700    1_
$a Ntargaras, Andreas $u Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens GR-11527, Greece.
700    1_
$a Koinis, Filippos $u Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens GR-11527, Greece.
700    1_
$a Polyzos, Alexander $u Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.
700    1_
$a Myrianthopoulos, Vassilios $u Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens GR-11527, Greece; Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece.
700    1_
$a Zhou, Hua $u Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA.
700    1_
$a Narang, Sonali $u Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
700    1_
$a Georgoulias, Vassilis $u Laboratory of Tumour Cell Biology, School of Medicine, University of Crete, Heraklion, Crete, Greece.
700    1_
$a Alexopoulos, Leonidas $u School of Mechanical Engineering, National Technical University of Athens, Zografou 15780, Greece.
700    1_
$a Aifantis, Iannis $u Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
700    1_
$a Townsend, Paul A $u Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester M20 4GJ, UK.
700    1_
$a Sfikakis, Petros $u 1st Department of Propaedeutic Internal Medicine, Medical School, Laikon Hospital, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens GR-11527, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens GR-11527, Greece.
700    1_
$a Fitzgerald, Rebecca $u Medical Research Council Cancer Unit, Hutchison/Medical Research Council Research Centre, University of Cambridge, Cambridge, UK. $7 xx0309810
700    1_
$a Thanos, Dimitris $u Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., Athens GR-11527, Greece.
700    1_
$a Bartek, Jiri $u Genome Integrity Unit, Danish Cancer Society Research Centre, Strandboulevarden 49, Copenhagen DK-2100, Denmark; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hněvotínská, Olomouc 1333/5 779 00, Czech Republic; Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 77, Sweden.
700    1_
$a Petty, Russell $u Division of Molecular and Clinical Medicine, Ninewells Hospital and School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland.
700    1_
$a Tsirigos, Aristotelis $u Department of Pathology, NYU School of Medicine, New York, NY 10016, USA; Laura and Isaac Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, NYU School of Medicine, New York, NY 10016, USA. Electronic address: aristotelis.tsirigos@nyulangone.org.
700    1_
$a Gorgoulis, Vassilis G $u Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., Athens GR-11527, Greece; Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens GR-11527, Greece; Division of Cancer Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, Manchester Cancer Research Centre, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester M20 4GJ, UK; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, Athens GR-11527, Greece. Electronic address: vgorg@med.uoa.gr.
773    0_
$w MED00006662 $t Pharmacology & therapeutics $x 1879-016X $g Roč. 203, č. - (2019), s. 107395
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31374225 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20231109124557 $b ABA008
999    __
$a ok $b bmc $g 1599701 $s 1116242
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 203 $c - $d 107395 $e 20190730 $i 1879-016X $m Pharmacology & therapeutics $n Pharmacol Ther $x MED00006662
GRA    __
$a P30 CA016087 $p NCI NIH HHS $2 United States
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...