Expanding conservation culturomics and iEcology from terrestrial to aquatic realms
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33119582
PubMed Central
PMC7595319
DOI
10.1371/journal.pbio.3000935
PII: PBIOLOGY-D-20-01169
Knihovny.cz E-zdroje
- MeSH
- divoká zvířata fyziologie MeSH
- ekosystém * MeSH
- ohrožené druhy MeSH
- rybářství MeSH
- zachování přírodních zdrojů * MeSH
- zkreslení výsledků (epidemiologie) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The ongoing digital revolution in the age of big data is opening new research opportunities. Culturomics and iEcology, two emerging research areas based on the analysis of online data resources, can provide novel scientific insights and inform conservation and management efforts. To date, culturomics and iEcology have been applied primarily in the terrestrial realm. Here, we advocate for expanding such applications to the aquatic realm by providing a brief overview of these new approaches and outlining key areas in which culturomics and iEcology are likely to have the highest impact, including the management of protected areas; fisheries; flagship species identification; detection and distribution of threatened, rare, and alien species; assessment of ecosystem status and anthropogenic impacts; and social impact assessment. When deployed in the right context with awareness of potential biases, culturomics and iEcology are ripe for rapid development as low-cost research approaches based on data available from digital sources, with increasingly diverse applications for aquatic ecosystems.
Berlin Brandenburg Institute of Advanced Biodiversity Research Berlin Germany
DBIO and CESAM Centre for Environmental and Marine Studies University of Aveiro Aveiro Portugal
Department of Botany and Biodiversity Research University of Vienna Vienna Austria
Helsinki Institute of Sustainability Science University of Helsinki Helsinki Finland
Institut de Ciències del Mar CSIC Barcelona Spain
Institute of Biology Freie Universität Berlin Berlin Germany
Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
School for Resource and Environmental Studies Dalhousie University Halifax Canada
School of Zoology Tel Aviv University Tel Aviv Israel
Steinhardt Museum of Natural History Tel Aviv University Tel Aviv Israel
Zobrazit více v PubMed
Ladle RJ, Correia RA, Do Y, Joo GJ, Malhado ACM, Proulx R, et al. Conservation culturomics. Front Ecol Environ. 2016;14: 269–275. 10.1002/fee.1260 DOI
Jarić I, Correia RA, Brook BW, Buettel JC, Courchamp F, Di Minin E, et al. iEcology: harnessing large online resources to generate ecological insights. Trends Ecol Evol. 2020;35(7): 630–639. 10.1016/j.tree.2020.03.003 PubMed DOI
Michel JB, Shen YK, Aiden AP, Veres A, Gray MK, Pickett JP, et al. Quantitative analysis of culture using millions of digitized books. Science. 2011;331: 176–182. 10.1126/science.1199644 PubMed DOI PMC
Haas AF, Guibert M, Foerschner A, Co T, Calhoun S, George E, et al. Can we measure beauty? Computational evaluation of coral reef aesthetics. PeerJ. 2015;3: e1390 10.7717/peerj.1390 PubMed DOI PMC
Wilde GR, Pope KL. Worldwide trends in fishing interest indicated by internet search volume. Fish Manag Ecol. 2013;20: 211–222. 10.1111/fme.12009 DOI
Sherren K, Parkins JR, Smit M, Holmlund M, Chen Y. Digital archives, big data and image-based culturomics for social impact assessment: opportunities and challenges. Environ Impact Assess Rev. 2017;67: 23–30. 10.1016/j.eiar.2017.08.002 DOI
Giovos I, Keramidas I, Antoniou C, Deidun A, Font T, Kleitou P, et al. Identifying recreational fisheries in the Mediterranean Sea through social media. Fish Manag Ecol. 2018;25: 287–295. 10.1111/fme.12293 DOI
Hale BW. Mapping potential environmental impacts from tourists using data from social media: A case study in the Westfjords of Iceland. Environ Manag. 2018;62: 446–457. 10.1007/s00267-018-1056-z PubMed DOI
Monkman GG, Kaiser MJ, Hyder K. Text and data mining of social media to map wildlife recreation activity. Biol Conserv. 2018;228: 89–99. 10.1016/j.biocon.2018.10.010 DOI
Do Y. Valuating aesthetic benefits of cultural ecosystem services using conservation culturomics. Ecosyst Serv. 2019;36: 100894 10.1016/j.ecoser.2019.100894 DOI
Retka J, Jepson P, Ladle RJ, Malhado ACM, Vieira FAS, Normande IC, et al. Assessing cultural ecosystem services of a large marine protected area through social media photographs. Ocean Coast Manage. 2019;176: 40–48. 10.1016/j.ocecoaman.2019.04.018 DOI
Sbragaglia V, Correia RA, Coco S, Arlinghaus R. Data mining on YouTube reveals fisher group-specific harvesting patterns and social engagement in recreational anglers and spearfishers. ICES J Mar Sci. 2019; fsz100 Epub 2019 Jun 14. 10.1093/icesjms/fsz100 DOI
Spalding M, Parrett CL. Global patterns in mangrove recreation and tourism. Mar Policy. 2019;110: 103540 10.1016/j.marpol.2019.103540 DOI
Francis FT, Howard BR, Berchtold AE, Branch TA, Chaves LCT, Dunic JC, et al. Shifting headlines? Size trends of newsworthy fishes. PeerJ. 2019;7: e6395 10.7717/peerj.6395 PubMed DOI PMC
Mittermeier JC, Roll U, Matthews TJ, Grenyer R. A season for all things: Phenological imprints in Wikipedia usage and their relevance to conservation. PLoS Biol. 2019;17: e3000146 10.1371/journal.pbio.3000146 PubMed DOI PMC
Allison GW, Lubchenco J, Carr MH. Marine reserves are necessary but not sufficient for marine conservation. Ecol Appl. 1998;8(sp1): S79–S92. 10.1890/1051-0761(1998)8[S79:MRANBN]2.0.CO;2 DOI
Collier KJ, Probert PK, Jeffries M. Conservation of aquatic invertebrates: concerns, challenges and conundrums. Aquat Conserv. 2016;26(5): 817–837. 10.1002/aqc.2710 DOI
Tickner D, Opperman JJ, Abell R, Acreman M, Arthington AH, Bunn SE, et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. Bioscience. 2020;70(4): 330–342. 10.1093/biosci/biaa002 PubMed DOI PMC
Padilla DK, Williams SL. Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front Ecol Environ. 2004;2: 131–138. 10.1890/1540-9295(2004)002[0131:BBWAAO]2.0.CO;2 DOI
Allan JD, Abell R, Hogan ZE, Revenga C, Taylor BW, Welcomme RL, et al. Overfishing of inland waters. BioScience. 2005;55: 1041–51. 10.1641/0006-3568(2005)055[1041:OOIW]2.0.CO;2 DOI
Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, et al. (2019). Mapping the world’s free-flowing rivers. Nature. 2019;569: 215–221. 10.1038/s41586-019-1111-9 PubMed DOI
Steneck RS, Pauly D. Fishing through the Anthropocene. Curr Biol. 2019;29: R987–R992. 10.1016/j.cub.2019.07.081 PubMed DOI
IPBES. Summary for policy-makers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Bonn, Germany: IPBES Secretariat; 2019.
Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev. 2006;81: 163–182. 10.1017/S1464793105006950 PubMed DOI
Webb TJ, Mindel BL. Global patterns of extinction risk in marine and non-marine systems. Curr Biol. 2015:25, 506–511. 10.1016/j.cub.2014.12.023 PubMed DOI
Katsanevakis S, Weber A, Pipitone C, Leopold M, Cronin M, Scheidat M, et al. Monitoring marine populations and communities: methods dealing with imperfect detectability. Aquat Biol. 2012;16(1): 31–52. 10.3354/ab00426 DOI
Hussey NE, Kessel ST, Aarestrup K, Cooke SJ, Cowley PD, Fisk AT, et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science. 2015;348: 1255642 10.1126/science.1255642 PubMed DOI
Bragagnolo C, Malhado AC, Jepson P, Ladle RJ. Modelling local attitudes to protected areas in developing countries. Conserv Soc. 2016;14: 163–182. 10.4103/0972-4923.191161 DOI
Stedman RC, Connelly NA, Heberlein TA, Decker DJ, Allred SB. The end of the (research) world as we know it? Understanding and coping with declining response rates to mail surveys. Soc Nat Res. 2019;32: 1139–1154. 10.1080/08941920.2019.1587127 DOI
Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, et al. The status of the world's land and marine mammals: diversity, threat, and knowledge. Science. 2008;322(5899): 225–230. 10.1126/science.1165115 PubMed DOI
Shihada B, Amin O, Bainbridge C, Jardak S, Alkhazragi O, Ng TK, et al. Aqua-Fi: Delivering Internet underwater using wireless optical networks. IEEE Commun Mag. 2020;58(5): 84–89. 10.1109/MCOM.001.2000009 DOI
Giovos I, Ganias K, Garagouni M, Gonzalvo J. Social media in the service of conservation: A case study of dolphins in the Hellenic seas. Aquat Mamm. 2016;42: 12–19. 10.1578/AM.42.1.2016.12 DOI
Pace DS, Giacomini G, Campana I, Paraboschi M, Pellegrino G, Silvestri M, et al. An integrated approach for cetacean knowledge and conservation in the central Mediterranean Sea using research and social media data sources. Aquat Conserv. 2019;29: 1302–1323. 10.1002/aqc.3117 DOI
Sullivan M, Robinson S, Littnan C. Social media as a data resource for #monkseal conservation. PLoS ONE. 2019;14: e0222627 10.1371/journal.pone.0222627 PubMed DOI PMC
Hong S, Do Y, Kim JY, Cowan P, Joo GJ. Conservation activities for the Eurasian otter (Lutra lutra) in South Korea traced from newspapers during 1962–2010. Biol Conserv. 2017;210: 157–162. 10.1016/j.biocon.2017.03.010 DOI
Leighton GR, Hugo PS, Roulin A, Amar A. Just Google it: assessing the use of Google Images to describe geographical variation in visible traits of organisms. Methods Ecol Evol. 2016;7: 1060–1070. 10.1111/2041-210X.12562 DOI
dos Santos AA, Gonçalves WN. Improving Pantanal fish species recognition through taxonomic ranks in convolutional neural networks. Ecol Inform. 2019;53: 100977 10.1016/j.ecoinf.2019.100977 DOI
Dujon AM, Schofield G. Importance of machine learning for enhancing ecological studies using information-rich imagery. Endanger Species Res. 2019;39: 91–104. 10.3354/esr00958 DOI
Ditria EM, Lopez-Marcano S, Sievers M, Jinks EL, Brown CJ, Connolly RM. Automating the analysis of fish abundance using object detection: optimizing animal ecology with deep learning. Front Mar Sci. 2020; 7:429 10.3389/fmars.2020.00429 DOI
Howell KL, Davies JS, Allcock AL, Braga-Henriques A, Buhl-Mortensen P, Carreiro-Silva M, et al. A framework for the development of a global standardised marine taxon reference image database (SMarTaR-ID) to support image-based analyses. PLoS ONE. 2019;14: e0218904 10.1371/journal.pone.0218904 PubMed DOI PMC
Harris SA, Shears NT, Radford CA. Ecoacoustic indices as proxies for biodiversity on temperate reefs. Methods Ecol Evol. 2016;7: 713–724. 10.1111/2041-210X.12527 DOI
Linke S, Gifford T, Desjonquères C, Tonolla D, Aubin T, Barclay L, et al. Freshwater ecoacoustics as a tool for continuous ecosystem monitoring. Front Ecol Environ. 2018;16: 231–238. 10.1002/fee.1779 DOI
Sethi SS, Jones NS, Fulcher BD, Picinali L, Clink DJ, Klinck H, et al. Characterizing soundscapes across diverse ecosystems using a universal acoustic feature set. Proc Natl Acad Sci USA. 2020;117(29): 17049–17055. 10.1073/pnas.2004702117 PubMed DOI PMC
De Frenne P, Van Langenhove L, Van Driessche A, Bertrand C, Verheyen K, Vangansbeke P. Using archived television video footage to quantify phenology responses to climate change. Methods Ecol Evol. 2018;9: 1874–1882. 10.1111/2041-210X.13024 DOI
Breckheimer IK, Theobald EJ, Cristea NC, Wilson AK, Lundquist JD, Rochefort RM, et al. Crowd‐sourced data reveal social–ecological mismatches in phenology driven by climate. Front Ecol Environ. 2020;18: 76–82. 10.1002/fee.2142 DOI
Galaz V, Crona B, Daw T, Bodin Ö, Nyström M, Olsson P. Can web crawlers revolutionize ecological monitoring? Front Ecol Environ. 2010;8: 99–104. 10.1890/070204 DOI
Atsumi K, Koizumi I. Web image search revealed large-scale variations in breeding season and nuptial coloration in a mutually ornamented fish, Tribolodon hakonensis. Ecol Res. 2017;32: 567–578. 10.1007/s11284-017-1466-z DOI
Elmer F, Kohl ZF, Johnson PT, Peachey RB. Black spot syndrome in reef fishes: using archival imagery and field surveys to characterize spatial and temporal distribution in the Caribbean. Coral Reefs. 2019;38: 1303–1315. 10.1007/s00338-019-01843-3 DOI
McClenachan L. Documenting loss of large trophy fish from the Florida Keys with historical photographs. Conserv Biol. 2009;23: 636–643. 10.1111/j.1523-1739.2008.01152.x PubMed DOI
Jiménez‐Alvarado D, Sarmiento‐Lezcano A, Guerra‐Marrero A, Tuya F, Santana Del Pino Á, Sealey MJ, et al. Historical photographs of captures of recreational fishers indicate overexploitation of nearshore resources at an oceanic island. J Fish Biol. 2019;94: 857–864. 10.1111/jfb.13969 PubMed DOI
van Rijn I, Kiflawi M, Belmaker J. Alien species stabilize local fisheries catch in a highly invaded ecosystem. Can J Fish Aquat Sci. 2020;77(4): 752–761. 10.1139/cjfas-2019-0065 DOI
O’Farrell S, Chollett I, Sanchirico JN, Perruso L. Classifying fishing behavioral diversity using high-frequency movement data. Proc Natl Acad Sci USA. 2019;116: 16811–16816. 10.1073/pnas.1906766116 PubMed DOI PMC
Caro T. Conservation by proxy: indicator, umbrella, keystone, flagship, and other surrogate species. Washington, DC: Island Press; 2010.
Verissimo D, MacMillan DC, Smith RJ. Toward a systematic approach for identifying conservation flagships. Conserv Lett. 2011;4(1): 1–8. 10.1111/j.1755-263X.2010.00151.x DOI
Fleishman E, Murphy DD, Brussard PF. A new method for selection of umbrella species for conservation planning. Ecol Appl. 2000;10(2): 569–579. 10.1890/1051-0761(2000)010[0569:ANMFSO]2.0.CO;2 DOI
Zacharias MA, Roff JC. Use of focal species in marine conservation and management: a review and critique. Aquat Conserv. 2001;11: 59–76. 10.1002/aqc.429 DOI
Kalinkat G, Cabral JS, Darwall W, Ficetola GF, Fisher JL, Giling DP, et al. Flagship umbrella species needed for the conservation of overlooked aquatic biodiversity. Conserv Biol. 2017;31: 481–485. 10.1111/cobi.12813 PubMed DOI
Roll U, Mittermeier JC, Diaz GI, Novosolov M, Feldman A, Itescu Y, et al. Using Wikipedia page views to explore the cultural importance of global reptiles. Biol Conserv. 2016;204: 42–50. 10.1016/j.biocon.2016.03.037 DOI
Davies T, Cowley A, Bennie J, Leyshon C, Inger R, Carter H, et al. Popular interest in vertebrates does not reflect extinction risk and is associated with bias in conservation investment. PLoS One. 2018;13: e0203694 10.1371/journal.pone.0203694 PubMed DOI PMC
Jenks B, Vaughan PW, Butler PJ. The evolution of Rare Pride: Using evaluation to drive adaptive management in a biodiversity conservation organization. Eval Program Plann. 2010;33: 186–190. 10.1016/j.evalprogplan.2009.07.010 PubMed DOI
Toivonen T, Heikinheimo V, Fink C, Hausmann A, Hiippala T, Järv O, et al. Social media data for conservation science: a methodological overview. Biol Conserv. 2019;233: 298–315. 10.1016/j.biocon.2019.01.023 DOI
Hausmann A, Toivonen T, Fink C, Heikinheimo V, Kulkarni R, Tenkanen H, et al. Understanding sentiment of national park visitors from social media data. People Nat. 2020;2: 750–760. 10.1002/pan3.10130 DOI
Hausmann A, Toivonen T, Slotow R, Tenkanen H, Moilanen A, Heikinheimo V, et al. Social media data can be used to understand tourists’ preferences for nature‐based experiences in protected areas. Conserv Lett. 2018;11: e12343 10.1111/conl.12343 DOI
Becken S, Connolly RM, Chen J, Stantic B. A hybrid is born: Integrating collective sensing, citizen science and professional monitoring of the environment. Ecol Inform. 2019;52: 35–45. 10.1016/j.ecoinf.2019.05.001 DOI
Sinclair M, Ghermandi A, Sheela AM. A crowdsourced valuation of recreational ecosystem services using social media data: An application to a tropical wetland in India. Sci Tot Environ. 2018;642: 356–365. 10.1016/j.scitotenv.2018.06.056 PubMed DOI
Becken S, Stantic B, Chen J, Alaei AR, Connolly RM. Monitoring the environment and human sentiment on the Great Barrier Reef: assessing the potential of collective sensing. J Environ Manage. 2017;203: 87–97. 10.1016/j.jenvman.2017.07.007 PubMed DOI
Chen Y, Parkins JR, Sherren K. Using geo-tagged Instagram posts to reveal landscape values around current and proposed hydroelectric dams and their reservoirs. Landscape Urban Plan. 2018;170: 283–292. 10.1016/j.landurbplan.2017.07.004 DOI
Chen Y, Parkins JR, Sherren K. Leveraging social media to understand younger people’s perceptions and use of hydroelectric energy landscapes. Soc Nat Res. 2019;32: 1114–1122. 10.1080/08941920.2019.1587128 DOI
Jiang H, Lin P, Qiang M. Public-opinion sentiment analysis for large hydro projects. J Constr Eng Manage. 2016;142: 05015013 10.1061/(ASCE)CO.1943-7862.0001039 DOI
Correia RA, Di Minin E, Jarić I, Jepson P, Ladle R, Mittermeier J, et al. Inferring public interest from search engine data requires caution. Front Ecol Environ. 2019;17: 254–255. 10.1002/fee.2048 DOI
Ghermandi A, Sinclair M. Passive crowdsourcing of social media in environmental research: A systematic map. Glob Environ Change. 2019;55: 36–47. 10.1016/j.gloenvcha.2019.02.003 DOI
Hunt LM, Gonder D, Haider W. Hearing voices from the silent majority: a comparison of preferred fish stocking outcomes for Lake Huron by anglers from representative and convenience samples. Hum Dimens Wildl. 2010;15: 27–44. 10.1080/10871200903360080 DOI
Hall M, Caton S. Am I who I say I am? Unobtrusive self-representation and personality recognition on Facebook. PLoS ONE. 2017;12(9): e0184417 10.1371/journal.pone.0184417 PubMed DOI PMC
Hiippala T, Hausmann A, Tenkanen H, Toivonen T. Exploring the linguistic landscape of geotagged social media content in urban environments. Digit Scholarsh Humanit. 2019;34(2): 290–309. 10.1093/llc/fqy049 DOI
Ladle RJ, Jepson P, Correia RA, Malhado AC. A culturomics approach to quantifying the salience of species on the global internet. People Nat. 2019;1: 524–532. 10.1002/pan3.10053 DOI
Monkman GG, Kaiser M, Hyder K. The ethics of using social media in fisheries research. Rev Fish Sci Aquac. 2018;26(2): 235–242. 10.1080/23308249.2017.1389854 DOI
Jarić I, Correia RA, Roberts DL, Gessner J, Meinard Y, Courchamp F. On the overlap between scientific and societal taxonomic attentions—Insights for conservation. Sci Tot Environ. 2019;648: 772–778. 10.1016/j.scitotenv.2018.08.198 PubMed DOI
Acerbi A, Kerhoas D, Webber AD, McCabe G, Mittermeier RA, Schwitzer C. The impact of the “World's 25 Most Endangered Primates” list on scientific publications and media. J Nat Conserv. 2020;54: 125794 10.1016/j.jnc.2020.125794 DOI
Convention on Biological Diversity. Zero draft of the post-2020 global biodiversity framework [Internet]. 2020 [cited 2020 Jul 21]. Available from: https://www.cbd.int/article/2020-01-10-19-02-38
Lam S, Cunsolo A, Sawatzky A, Ford J, Harper SL. How does the media portray drinking water security in Indigenous communities in Canada? An analysis of Canadian newspaper coverage from 2000–2015. BMC Public Health. 2017;17(1): 282 10.1186/s12889-017-4164-4 PubMed DOI PMC
Sherren K, Smit M, Holmlund M, Parkins JR, Chen Y. Conservation culturomics should include images and a wider range of scholars. Front Ecol Environ. 2017;15: 289–290. 10.1002/fee.1507 DOI
Fischer J, Manning AD, Steffen W, Rose DB, Daniell K, Felton A, et al. Mind the sustainability gap. Trends Ecol Evol. 2007;22: 621–624. 10.1016/j.tree.2007.08.016 PubMed DOI
Freshwater mussel conservation: A global horizon scan of emerging threats and opportunities