-
Something wrong with this record ?
Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis
Q. Zhu, M. Gallemí, J. Pospíšil, P. Žádníková, M. Strnad, E. Benková,
Language English Country Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1953 to 6 months ago
Open Access Digital Library
from 1953-03-01 to 6 months ago
PubMed
31391194
DOI
10.1242/dev.175919
Knihovny.cz E-resources
- MeSH
- Arabidopsis MeSH
- Plants, Genetically Modified MeSH
- Gibberellins metabolism MeSH
- Hypocotyl growth & development MeSH
- Germination physiology MeSH
- Plant Roots growth & development MeSH
- Abscisic Acid metabolism MeSH
- Indoleacetic Acids metabolism MeSH
- Meristem growth & development MeSH
- Gravity Sensing physiology MeSH
- Arabidopsis Proteins metabolism MeSH
- Gene Expression Regulation, Plant MeSH
- Plant Growth Regulators metabolism MeSH
- Seedlings growth & development MeSH
- Gene Expression Regulation, Developmental MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The apical hook is a transiently formed structure that plays a protective role when the germinating seedling penetrates through the soil towards the surface. Crucial for proper bending is the local auxin maxima, which defines the concave (inner) side of the hook curvature. As no sign of asymmetric auxin distribution has been reported in embryonic hypocotyls prior to hook formation, the question of how auxin asymmetry is established in the early phases of seedling germination remains largely unanswered. Here, we analyzed the auxin distribution and expression of PIN auxin efflux carriers from early phases of germination, and show that bending of the root in response to gravity is the crucial initial cue that governs the hypocotyl bending required for apical hook formation. Importantly, polar auxin transport machinery is established gradually after germination starts as a result of tight root-hypocotyl interaction and a proper balance between abscisic acid and gibberellins.This article has an associated 'The people behind the papers' interview.
Department of Plant Systems Biology VIB 9052 Gent Belgium
Institute of Science and Technology Austria Klosterneuburg 3400 Austria
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20025655
- 003
- CZ-PrNML
- 005
- 20201222154024.0
- 007
- ta
- 008
- 201125s2019 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1242/dev.175919 $2 doi
- 035 __
- $a (PubMed)31391194
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Zhu, Qiang $u Basic Forestry & Proteomics Center (BFPC), College of Forestry, Fujian Agriculture and Forestry University, 350002 Fuzhou, China. Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria.
- 245 10
- $a Root gravity response module guides differential growth determining both root bending and apical hook formation in Arabidopsis / $c Q. Zhu, M. Gallemí, J. Pospíšil, P. Žádníková, M. Strnad, E. Benková,
- 520 9_
- $a The apical hook is a transiently formed structure that plays a protective role when the germinating seedling penetrates through the soil towards the surface. Crucial for proper bending is the local auxin maxima, which defines the concave (inner) side of the hook curvature. As no sign of asymmetric auxin distribution has been reported in embryonic hypocotyls prior to hook formation, the question of how auxin asymmetry is established in the early phases of seedling germination remains largely unanswered. Here, we analyzed the auxin distribution and expression of PIN auxin efflux carriers from early phases of germination, and show that bending of the root in response to gravity is the crucial initial cue that governs the hypocotyl bending required for apical hook formation. Importantly, polar auxin transport machinery is established gradually after germination starts as a result of tight root-hypocotyl interaction and a proper balance between abscisic acid and gibberellins.This article has an associated 'The people behind the papers' interview.
- 650 _2
- $a kyselina abscisová $x metabolismus $7 D000040
- 650 _2
- $a Arabidopsis $7 D017360
- 650 _2
- $a proteiny huseníčku $x metabolismus $7 D029681
- 650 _2
- $a vývojová regulace genové exprese $7 D018507
- 650 _2
- $a regulace genové exprese u rostlin $7 D018506
- 650 _2
- $a klíčení $x fyziologie $7 D018525
- 650 _2
- $a gibereliny $x metabolismus $7 D005875
- 650 _2
- $a percepce tíhy $x fyziologie $7 D018466
- 650 _2
- $a hypokotyl $x růst a vývoj $7 D018546
- 650 _2
- $a kyseliny indoloctové $x metabolismus $7 D007210
- 650 _2
- $a meristém $x růst a vývoj $7 D018519
- 650 _2
- $a regulátory růstu rostlin $x metabolismus $7 D010937
- 650 _2
- $a kořeny rostlin $x růst a vývoj $7 D018517
- 650 _2
- $a geneticky modifikované rostliny $7 D030821
- 650 _2
- $a semenáček $x růst a vývoj $7 D036226
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Gallemí, Marçal $u Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria.
- 700 1_
- $a Pospíšil, Jiří $u Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University Olomouc, CZ-771 47, Czech Republic.
- 700 1_
- $a Žádníková, Petra $u Department of Plant Systems Biology, VIB, 9052 Gent, Belgium.
- 700 1_
- $a Strnad, Miroslav $u Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University Olomouc, CZ-771 47, Czech Republic.
- 700 1_
- $a Benková, Eva $u Institute of Science and Technology Austria, Klosterneuburg, 3400, Austria eva.benkova@ist.ac.at.
- 773 0_
- $w MED00001363 $t Development (Cambridge, England) $x 1477-9129 $g Roč. 146, č. 17 (2019)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31391194 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20201125 $b ABA008
- 991 __
- $a 20201222154020 $b ABA008
- 999 __
- $a ok $b bmc $g 1599800 $s 1116341
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2019 $b 146 $c 17 $e 20190912 $i 1477-9129 $m Development $n Development $x MED00001363
- LZP __
- $a Pubmed-20201125